GAN Image Generator and Characterwise Image Recognizer with python

Overview

MODEL SUMMARY

모델의 구조는 크게 6단계로 나뉩니다.

STEP 0: Input Image

raw

Predict 할 이미지를 모델에 입력합니다.

STEP 1: Make Black and White Image

raw

STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을 백색으로 변환하는 과정입니다.

STEP 2: Make Fake image by GAN Model

raw

STEP 2 는 STEP 1에서 입력받은 이미지를 하나의 통일된 폰트의 이미지로 변환하는 과정입니다.

모델은 Pix2Pix Image-to-Image Translation 모델의 Generator 를 이용하며, 기울어지거나 Blurring 된 이미지도 위와 같이 정렬 및 복원하여 출력합니다.

STEP 3: Character-wise Text Detection - Bounding Box

raw

STEP 3 는 STEP 2의 Word 단위로 출력된 이미지에 Charater 단위 Bounding Box 를 만드는 과정입니다.

Bounding Box 를 형성하는데 Naver Clova CRAFT 모델을 사용하며, 위와 같이 CRAFT 모델 결과로 나온 score map 을 이용하여 Bounding Box 를 만듭니다.

STEP 4: Character-wise Text Detection - Cut Out Image

raw

STEP4 는 Bounding Box 좌표값을 바탕으로 STEP 2의 이미지에서 이미지를 잘라내는 과정입니다.

STEP 5: Character-wise Recognition

raw

raw

STEP 5 는 잘라낸 이미지를 글자로 변환하는 과정입니다.

다양한 폰트의 한글과 영어, 특수기호 이미지 데이터에 왜곡와 Blur 를 추가하여 학습한 모델을 사용하며, 각 Character 에 맞는 글자를 출력합니다.

STEP 6: Make Result File

raw

STEP 6 STEP 5 에서 Charater 단위로 출력한 글자를 조합하여 입력 이미지에 맞는 Word 를 출력하는 과정입니다.

HOW TO PREDICT

제출된 submission 폴더로 들어간 뒤, images 폴더 내에 새 폴더를 생성합니다. 이때, 새 폴더의 이름을 "test"라 하겠습니다.

~submission/$ cd images
~submission/images/$ mkdir test

새로 생성된 test 폴더에 이미지들을 넣습니다.

이후, 아래 코드를 실행합니다.

~/submission/$ myOCR_6STEP.py --input_tag test --output_tag first

이후, 코드는 예측을 시작하며, 결과파일은 아래 경로에 저장됩니다.

~/submission/result/test_first/result.csv

HOW TO TRAIN

본 대회 제출물에서 사용된 모델은 총 3개이며, 이 모델은 1개의 사전학습모델과 2개의 자체학습모델로 구성됩니다.

PRE-TRAINED

이미지에서 단일 Character를 인식해내는 모델은 NAVER 팀의 CRAFT 사전학습모델을 사용하였습니다. 이 모델은 이미지를 입력받아, 단일 Character의 중심점 위치를 판단할 수 있는 score map을 반환합니다. REFERENCE-CRAFT

TRAIN

GAN Image Generator

다양한 색상과 폰트, 크기를 가진 단어 이미지를 흑백 색상, 단일 폰트, 단일 크기를 가진 단어 이미지로 바꾸어주는 Image Generater Model 입니다. 이 모델에서는 전처리된 이미지를 사용합니다. 전처리의 경우 아래와 같이 진행합니다.

# TO DO

아래 위치에 각각 원본데이터와 새로 제작하고자 하는 이미지를 저장합니다.

~/submission/GAN_train/images_preprocessed # 원본 이미지
~/submission/GAN_train/images_trans(default font) # 출력하고자 하는 이미지

각각 위치에는, 실재 학습에 사용된 30060장의 데이터가 들어가 있습니다.

~/submission/$ cd GAN_train
~/submission/GAN_train/Full_train.py

Characterwise Image Recognizer

글자 인식 부분은 아래와 같이 학습 가능합니다.

~/submission/$ cd hangul-syllable-recognition
~/submission/hangul-syllable-recognition/$ python train.py

위 코드를 실행시키면 기존에 저정되어있는 학습용 이미지와 label로 학습을 시작하며, 일정 주기로 모델을 저장합니다.

~/submission/hangul-syllable-recognition/data/train_150000_F49/ # 학습용 이미지 저장소
~/submission/hangul-syllable-recognition/data/train_150000_F49.csv #학습용 이미지 정답 label
~/submission/hangul-syllable-recognition/saved_model/ #학습된 모델 저장 공간

학습용 이미지는 TRGD를 이용해 제작했으며, 상업적으로 이용 가능한 폰트 49종을 이용해 제작했습니다. 학습에 사용된 글자는 한글 KS X 1001 완성형 2350자와 영어 대소문자 52자, 특수기호 26자 (){}[]<>.'?!:+-/*=~@#$%^& 숫자 10자를 포함해 총 2438자를 학습했습니다.

REFERENCE-MODEL REFERENCE-TRDG

CONTRIBUTOR

고려대학교 김정기 ([email protected])

한양대학교 정혜영 ([email protected])

포항공과대학교 한주완 ([email protected])

Owner
Juwan HAN
Juwan HAN
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Fang Zhonghao 13 Nov 19, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023