AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

Related tags

Deep Learningaugmix
Overview

AugMix

Introduction

We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented images, which results in increased robustness and improved uncertainty calibration. AugMix does not require tuning to work correctly, as with random cropping or CutOut, and thus enables plug-and-play data augmentation. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance by more than half in some cases. With AugMix, we obtain state-of-the-art on ImageNet-C, ImageNet-P and in uncertainty estimation when the train and test distribution do not match.

For more details please see our ICLR 2020 paper.

Pseudocode

Contents

This directory includes a reference implementation in NumPy of the augmentation method used in AugMix in augment_and_mix.py. The full AugMix method also adds a Jensen-Shanon Divergence consistency loss to enforce consistent predictions between two different augmentations of the input image and the clean image itself.

We also include PyTorch re-implementations of AugMix on both CIFAR-10/100 and ImageNet in cifar.py and imagenet.py respectively, which both support training and evaluation on CIFAR-10/100-C and ImageNet-C.

Requirements

  • numpy>=1.15.0
  • Pillow>=6.1.0
  • torch==1.2.0
  • torchvision==0.2.2

Setup

  1. Install PyTorch and other required python libraries with:

    pip install -r requirements.txt
    
  2. Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data/cifar
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/cifar/
    tar -xvf CIFAR-10-C.tar -C data/cifar/
    
  3. Download ImageNet-C with:

    mkdir -p ./data/imagenet/imagenet-c
    curl -O https://zenodo.org/record/2235448/files/blur.tar
    curl -O https://zenodo.org/record/2235448/files/digital.tar
    curl -O https://zenodo.org/record/2235448/files/noise.tar
    curl -O https://zenodo.org/record/2235448/files/weather.tar
    tar -xvf blur.tar -C data/imagenet/imagenet-c
    tar -xvf digital.tar -C data/imagenet/imagenet-c
    tar -xvf noise.tar -C data/imagenet/imagenet-c
    tar -xvf weather.tar -C data/imagenet/imagenet-c
    

Usage

The Jensen-Shannon Divergence loss term may be disabled for faster training at the cost of slightly lower performance by adding the flag --no-jsd.

Training recipes used in our paper:

WRN: python cifar.py

AllConv: python cifar.py -m allconv

ResNeXt: python cifar.py -m resnext -e 200

DenseNet: python cifar.py -m densenet -e 200 -wd 0.0001

ResNet-50: python imagenet.py <path/to/imagenet> <path/to/imagenet-c>

Pretrained weights

Weights for a ResNet-50 ImageNet classifier trained with AugMix for 180 epochs are available here.

This model has a 65.3 mean Corruption Error (mCE) and a 77.53% top-1 accuracy on clean ImageNet data.

Citation

If you find this useful for your work, please consider citing

@article{hendrycks2020augmix,
  title={{AugMix}: A Simple Data Processing Method to Improve Robustness and Uncertainty},
  author={Hendrycks, Dan and Mu, Norman and Cubuk, Ekin D. and Zoph, Barret and Gilmer, Justin and Lakshminarayanan, Balaji},
  journal={Proceedings of the International Conference on Learning Representations (ICLR)},
  year={2020}
}
Owner
Google Research
Google Research
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023