This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

Overview

neon_course

This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see our documentation and our API.

Note: this version of the neon course is synchronized to work with neon v1.8.1, and some notebooks require installation of the aeon dataloader. For install instructions, see the neon and aeon documentation. See neon_course v1.2 for a version of this repository that works with neon version 1.2.

The jupyter notebooks in this repository include:

01 MNIST example

Comprehensive walk-through of how to use neon to build a simple model to recognize handwritten digits. Recommended as an introduction to the neon framework.

02 Fine-tuning

A popular application of deep learning is to load a pre-trained model and fine-tune on a new dataset that may have a different number of categories. This example walks through how to load a VGG model that has been pre-trained on ImageNet, a large corpus of natural images belonging to 1000 categories, and re-train the final few layers on the CIFAR-10 dataset, which has only 10 categories.

03 Writing a custom dataset object

neon provides many built-in methods for loading data from images, videos, audio, text, and more. In the rare cases where you may have to implement a custom dataset object, this notebooks guides users through building a custom dataset object for a modified version of the Street View House Number (SVHN) dataset. Users will not only write a custom dataset, but also design a network to, given an image, draw a bounding box around the digit sequence.

04 Writing a custom activation function and a custom layer

This notebook walks developers through how to implement custom activation functions and layers within neon. We implement the Affine layer, and demonstrate the speed-up difference between using a python-based computation and our own heavily optimized kernels.

05 Defining complex branching models

When simple sequential lists of layers do not suffice for your complex models, we present how to build complex branching models within neon.

06 Deep Residual network on the CIFAR-10 dataset

In neon, models are constructed as python lists, which makes it easy to use for-loops to define complex models that have repeated patterns, such as deep residual networks. This notebook is an end-to-end walkthrough of building a deep residual network, training on the CIFAR-10 dataset, and then applying the model to predict categories on novel images.

07 Writing a custom callback

Callbacks allow models to report back to users its progress during training. In this notebook, we present a callback that plots training cost in real-time within the jupyter notebook.

08 Detecting overfitting

Overfitting is often encountered when training deep learning models. This tutorial demonstrates how to use our visualization tools to detect when a model has overfit on the training data, and how to apply Dropout layers to correct the problem.

For several of the guided exercises, answer keys are provided in the answers/ folder.

09 Sentiment Analysis with LSTM

These two notebooks guide the user through training a recurrent neural network to classify paragraphs of movie reviews into either a positive or negative sentiment. The second notebook contains an example of inference with a trained model, including a section for users to write their own reviews and submit to the model for classification.

Setting up notebooks on remote machines

Some of these notebooks require access to a Titan X GPU. For full instructions on launching a notebook server that one could connect to from a different machine, see http://jupyter-notebook.readthedocs.io/en/latest/public_server.html. For a simple setup, first generate a configuration file:

$ jupyter notebook --generate-config

In your ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py and edit the following lines:

c.NotebookApp.ip = '*'

c.NotebookApp.port = 8888

Save your changes and launch the jupyter notebook:

$ jupyter notebook

From a separate machine, open your browser and point to https://[server address]:8888 to connect to the jupyter notebook.

Nervana Cloud

The Nervana Cloud includes an interactive mode to launch jupyter notebooks on our Titan X GPU servers. If you have cloud credentials, launch an interactive session with the ncloud interact command.

For more information, see: http://doc.cloud.nervanasys.com/docs/latest/interact.html

Owner
Nervana
Intel® Nervana™ - Artificial Intelligence Products Group
Nervana
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022