Import Python modules from dicts and JSON formatted documents.

Overview

Paker

Build Version Version

Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter.

Important: Since v0.6.0 paker supports importing .pyd and .dll modules directly from memory. This was achieved by using _memimporter from py2exe project. Importing .so files on Linux still requires writing them to disk.

Installation

From PyPI

pip install paker -U

From source

git clone https://github.com/desty2k/paker.git
cd paker
pip install .

Usage

In Python script

You can import Python modules directly from string, dict or bytes (without disk IO).

import paker
import logging

MODULE = {"somemodule": {"type": "module", "extension": "py", "code": "fun = lambda x: x**2"}}
logging.basicConfig(level=logging.NOTSET)

if __name__ == '__main__':
    with paker.loads(MODULE) as loader:
        # somemodule will be available only in this context
        from somemodule import fun
        assert fun(2), 4
        assert fun(5), 25
        print("6**2 is {}".format(fun(6)))
        print("It works!")

To import modules from .json files use load function. In this example paker will serialize and import mss package.

import paker
import logging

file = "mss.json"
logging.basicConfig(level=logging.NOTSET)

# install mss using `pip install mss`
# serialize module
with open(file, "w+") as f:
    paker.dump("mss", f, indent=4)

# now you can uninstall mss using `pip uninstall mss -y`
# load package back from dump file
with open(file, "r") as f:
    loader = paker.load(f)

import mss
with mss.mss() as sct:
    sct.shot()

# remove loader and clean the cache
loader.unload()

try:
    # this will throw error
    import mss
except ImportError:
    print("mss unloaded successfully!")

CLI

Paker can also work as a standalone script. To dump module to JSON dict use dump command:

paker dump mss

To recreate module from JSON dict use load:

paker load mss.json

Show all modules and packages in .json file

paker list mss.json

How it works

When importing modules or packages Python iterates over importers in sys.meta_path and calls find_module method on each object. If the importer returns self, it means that the module can be imported and None means that importer did not find searched package. If any importer has confirmed the ability to import module, Python executes another method on it - load_module. Paker implements its own importer called jsonimporter, which instead of searching for modules in directories, looks for them in Python dictionaries

To dump module or package to JSON document, Paker recursively iterates over modules and creates dict with code and type of each module and submodules if object is package.

You might also like...
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

Comments
  • psutil example exits with module not found when using _memimporter

    psutil example exits with module not found when using _memimporter

    I pulled latest releases zip file, ran python setup.py build and attempted to run the psutil example with the compiled pyd. This resulted in the following error:

    DEBUG:jsonimporter:searching for pwd
    DEBUG:jsonimporter:searching for psutil._common
    INFO:jsonimporter:psutil._common has been imported successfully
    DEBUG:jsonimporter:searching for psutil._compat
    INFO:jsonimporter:psutil._compat has been imported successfully
    DEBUG:jsonimporter:searching for psutil._pswindows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    INFO:jsonimporter:using _memimporter to load '.pyd' file
    INFO:jsonimporter:unloaded all modules
    Traceback (most recent call last):
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\psutil_example.py", line 20, in <module>
        import psutil
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 107, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 35, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 134, in load_module
        mod = _memimporter.import_module(fullname, path, initname, self._get_data, spec)
    ImportError: MemoryLoadLibrary failed loading psutil\_psutil_windows.pyd: The specified module could not be found. (126)
    

    Is this an issue with how I compiled memimporter, or something else?

    opened by rkbennett 1
Releases(v0.7.1)
Owner
Wojciech Wentland
Wojciech Wentland
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022