Import Python modules from dicts and JSON formatted documents.

Overview

Paker

Build Version Version

Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter.

Important: Since v0.6.0 paker supports importing .pyd and .dll modules directly from memory. This was achieved by using _memimporter from py2exe project. Importing .so files on Linux still requires writing them to disk.

Installation

From PyPI

pip install paker -U

From source

git clone https://github.com/desty2k/paker.git
cd paker
pip install .

Usage

In Python script

You can import Python modules directly from string, dict or bytes (without disk IO).

import paker
import logging

MODULE = {"somemodule": {"type": "module", "extension": "py", "code": "fun = lambda x: x**2"}}
logging.basicConfig(level=logging.NOTSET)

if __name__ == '__main__':
    with paker.loads(MODULE) as loader:
        # somemodule will be available only in this context
        from somemodule import fun
        assert fun(2), 4
        assert fun(5), 25
        print("6**2 is {}".format(fun(6)))
        print("It works!")

To import modules from .json files use load function. In this example paker will serialize and import mss package.

import paker
import logging

file = "mss.json"
logging.basicConfig(level=logging.NOTSET)

# install mss using `pip install mss`
# serialize module
with open(file, "w+") as f:
    paker.dump("mss", f, indent=4)

# now you can uninstall mss using `pip uninstall mss -y`
# load package back from dump file
with open(file, "r") as f:
    loader = paker.load(f)

import mss
with mss.mss() as sct:
    sct.shot()

# remove loader and clean the cache
loader.unload()

try:
    # this will throw error
    import mss
except ImportError:
    print("mss unloaded successfully!")

CLI

Paker can also work as a standalone script. To dump module to JSON dict use dump command:

paker dump mss

To recreate module from JSON dict use load:

paker load mss.json

Show all modules and packages in .json file

paker list mss.json

How it works

When importing modules or packages Python iterates over importers in sys.meta_path and calls find_module method on each object. If the importer returns self, it means that the module can be imported and None means that importer did not find searched package. If any importer has confirmed the ability to import module, Python executes another method on it - load_module. Paker implements its own importer called jsonimporter, which instead of searching for modules in directories, looks for them in Python dictionaries

To dump module or package to JSON document, Paker recursively iterates over modules and creates dict with code and type of each module and submodules if object is package.

You might also like...
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

Comments
  • psutil example exits with module not found when using _memimporter

    psutil example exits with module not found when using _memimporter

    I pulled latest releases zip file, ran python setup.py build and attempted to run the psutil example with the compiled pyd. This resulted in the following error:

    DEBUG:jsonimporter:searching for pwd
    DEBUG:jsonimporter:searching for psutil._common
    INFO:jsonimporter:psutil._common has been imported successfully
    DEBUG:jsonimporter:searching for psutil._compat
    INFO:jsonimporter:psutil._compat has been imported successfully
    DEBUG:jsonimporter:searching for psutil._pswindows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    DEBUG:jsonimporter:searching for psutil._psutil_windows
    INFO:jsonimporter:using _memimporter to load '.pyd' file
    INFO:jsonimporter:unloaded all modules
    Traceback (most recent call last):
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\psutil_example.py", line 20, in <module>
        import psutil
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 107, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 115, in load_module
        exec(jsonmod["code"], mod.__dict__)
      File "<string>", line 35, in <module>
      File "c:\Users\User\Desktop\paker-0.7.1\paker-0.7.1\build\lib.win-amd64-cpython-310\paker\importers\jsonimporter.py", line 134, in load_module
        mod = _memimporter.import_module(fullname, path, initname, self._get_data, spec)
    ImportError: MemoryLoadLibrary failed loading psutil\_psutil_windows.pyd: The specified module could not be found. (126)
    

    Is this an issue with how I compiled memimporter, or something else?

    opened by rkbennett 1
Releases(v0.7.1)
Owner
Wojciech Wentland
Wojciech Wentland
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022