[NeurIPS2021] Code Release of Learning Transferable Perturbations

Overview

Learning Transferable Adversarial Perturbations

This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is in early release and will be updated by December first week.

Installation

It requires the following OpenMMLab packages:

  • PyTorch: 1.7.1+cu101
  • Python: 3.6.9
  • Torchvision: 0.8.2+cu101
  • CUDA: 10.1
  • CUDNN: 7603
  • NumPy: 1.18.1
  • PIL: 7.0.0
  1. Download source code from GitHub
     git clone https://github.com/krishnakanthnakka/Transferable_Perturbations.git
    
  2. Create conda virtual-environment
     conda create --name LTP python=3.6.9
    
  3. Activate conda environment
     source activate LTP
    
  4. Install requirements
     pip install -r requirements.txt
    

Data preparation

The data structure of ImageNet1M looks like below:

/path/to/ImageNet/
├── ImageNet1M
│   ├── train
│   │   ├── n02328150
│   │   ├── n03447447
│   ├── val
│   │   ├── n02328150
│   │   ├── n03447447

Results on ImageNet5K

Train VGG16 ResNet152 Inceptionv3 DenseNet121 SqueezeNet1.1 ShuffleNet MNASNet MobileNet
VGG16 99.32% 68.38% 46.60% 84.68% 86.52% 67.84% 90.44% 60.08%
ResNet152 99.10% 99.72% 74.90% 98.82% 89.12% 96.48% 94.00% 86.44%
SqueezeNet1.1 98.52% 86.67% 75.54% 93.57% 92.47% 89.44% 92.91% 82.75%

Citation

@inproceedings{nakka2021learning,
    title={Learning Transferable Adversarial Perturbations},
    author={Krishna Kanth Nakka and Mathieu Salzmann},
    year={2021},
    booktitle={NeurIPS},
}
Owner
Krishna Kanth
EPFL
Krishna Kanth
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022