Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Overview

Pano3D

A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation

made-with-python Maintaner Maintaner

Streamlit Demo YouTube Video Views

Pano3D Intro

Pano3D is a new benchmark for depth estimation from spherical panoramas. We generate a dataset (using GibsonV2) and provide baselines for holistic performance assessment, offering:

  1. Primary and secondary traits metrics:
    • Direct depth performance:
      • (w)RMSE
      • (w)RMSLE
      • AbsRel
      • SqRel
      • (w)Relative accuracy (\delta) @ {1.05, 1.1, 1.25, 1.252, 1.253 }
    • Boundary discontinuity preservation:
      • Precision @ {0.25, 0.5, 1.0}m
      • Recall @ {0.25, 0.5, 1.0}m
      • Depth boundary errors of accuracy and completeness
    • Surface smoothness:
      • RMSEo
      • Relative accuracy (\alpha) @ {11.25o, 22.5o, 30o}
  2. Out-of-distribution & Zero-shot cross dataset transfer:
    • Different depth distribution test set
    • Varying scene context test set
    • Shifted camera domain test set

By disentangling generalization and assessing all depth properties, Pano3D aspires to drive progress benchmarking for 360o depth estimation.

Using Pano3D to search for a solid baseline results in an acknowledgement of exploiting complementary error terms, adding encoder-decoder skip connections and using photometric augmentations.

TODO

  • Web Demo
  • Data Download
  • Loader & Splits
  • Models Weights Download
  • Model Serve Code
  • Model Hub Code
  • Metrics Code

Demo

A publicly hosted demo of the baseline models can be found here. Using the web app, it is possible to upload a panorama and download a 3D reconstructed mesh of the scene using the derived depth map.

Note that due to the external host's caching issues, it might be necessary to refresh your browser's cache in between runs to update the 3D models.

Data

Download

To download the data, follow the instructions at vcl3d.github.io/Pano3D/download/.

Please note that getting access to the data download links is a two step process as the dataset is a derivative and compliance with the original dataset's terms and usage agreements is required. Therefore:

  1. You first need to fill in this Google Form.
  2. And, then, you need to perform an access request at each one of the Zenodo repositories (depending on which dataset partition you need):

After both these steps are completed, you will soon receive the download links for each dataset partition.

Loader

Splits

Models

Download

Inference

Serve

Metrics

Direct

Boundary

Smoothness

Results

Owner
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Computer Vision Lab in CERTH-ITI
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022