Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Overview

Pano3D

A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation

made-with-python Maintaner Maintaner

Streamlit Demo YouTube Video Views

Pano3D Intro

Pano3D is a new benchmark for depth estimation from spherical panoramas. We generate a dataset (using GibsonV2) and provide baselines for holistic performance assessment, offering:

  1. Primary and secondary traits metrics:
    • Direct depth performance:
      • (w)RMSE
      • (w)RMSLE
      • AbsRel
      • SqRel
      • (w)Relative accuracy (\delta) @ {1.05, 1.1, 1.25, 1.252, 1.253 }
    • Boundary discontinuity preservation:
      • Precision @ {0.25, 0.5, 1.0}m
      • Recall @ {0.25, 0.5, 1.0}m
      • Depth boundary errors of accuracy and completeness
    • Surface smoothness:
      • RMSEo
      • Relative accuracy (\alpha) @ {11.25o, 22.5o, 30o}
  2. Out-of-distribution & Zero-shot cross dataset transfer:
    • Different depth distribution test set
    • Varying scene context test set
    • Shifted camera domain test set

By disentangling generalization and assessing all depth properties, Pano3D aspires to drive progress benchmarking for 360o depth estimation.

Using Pano3D to search for a solid baseline results in an acknowledgement of exploiting complementary error terms, adding encoder-decoder skip connections and using photometric augmentations.

TODO

  • Web Demo
  • Data Download
  • Loader & Splits
  • Models Weights Download
  • Model Serve Code
  • Model Hub Code
  • Metrics Code

Demo

A publicly hosted demo of the baseline models can be found here. Using the web app, it is possible to upload a panorama and download a 3D reconstructed mesh of the scene using the derived depth map.

Note that due to the external host's caching issues, it might be necessary to refresh your browser's cache in between runs to update the 3D models.

Data

Download

To download the data, follow the instructions at vcl3d.github.io/Pano3D/download/.

Please note that getting access to the data download links is a two step process as the dataset is a derivative and compliance with the original dataset's terms and usage agreements is required. Therefore:

  1. You first need to fill in this Google Form.
  2. And, then, you need to perform an access request at each one of the Zenodo repositories (depending on which dataset partition you need):

After both these steps are completed, you will soon receive the download links for each dataset partition.

Loader

Splits

Models

Download

Inference

Serve

Metrics

Direct

Boundary

Smoothness

Results

Owner
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Computer Vision Lab in CERTH-ITI
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022