Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Overview

Pano3D

A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation

made-with-python Maintaner Maintaner

Streamlit Demo YouTube Video Views

Pano3D Intro

Pano3D is a new benchmark for depth estimation from spherical panoramas. We generate a dataset (using GibsonV2) and provide baselines for holistic performance assessment, offering:

  1. Primary and secondary traits metrics:
    • Direct depth performance:
      • (w)RMSE
      • (w)RMSLE
      • AbsRel
      • SqRel
      • (w)Relative accuracy (\delta) @ {1.05, 1.1, 1.25, 1.252, 1.253 }
    • Boundary discontinuity preservation:
      • Precision @ {0.25, 0.5, 1.0}m
      • Recall @ {0.25, 0.5, 1.0}m
      • Depth boundary errors of accuracy and completeness
    • Surface smoothness:
      • RMSEo
      • Relative accuracy (\alpha) @ {11.25o, 22.5o, 30o}
  2. Out-of-distribution & Zero-shot cross dataset transfer:
    • Different depth distribution test set
    • Varying scene context test set
    • Shifted camera domain test set

By disentangling generalization and assessing all depth properties, Pano3D aspires to drive progress benchmarking for 360o depth estimation.

Using Pano3D to search for a solid baseline results in an acknowledgement of exploiting complementary error terms, adding encoder-decoder skip connections and using photometric augmentations.

TODO

  • Web Demo
  • Data Download
  • Loader & Splits
  • Models Weights Download
  • Model Serve Code
  • Model Hub Code
  • Metrics Code

Demo

A publicly hosted demo of the baseline models can be found here. Using the web app, it is possible to upload a panorama and download a 3D reconstructed mesh of the scene using the derived depth map.

Note that due to the external host's caching issues, it might be necessary to refresh your browser's cache in between runs to update the 3D models.

Data

Download

To download the data, follow the instructions at vcl3d.github.io/Pano3D/download/.

Please note that getting access to the data download links is a two step process as the dataset is a derivative and compliance with the original dataset's terms and usage agreements is required. Therefore:

  1. You first need to fill in this Google Form.
  2. And, then, you need to perform an access request at each one of the Zenodo repositories (depending on which dataset partition you need):

After both these steps are completed, you will soon receive the download links for each dataset partition.

Loader

Splits

Models

Download

Inference

Serve

Metrics

Direct

Boundary

Smoothness

Results

Owner
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Computer Vision Lab in CERTH-ITI
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022