这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Overview

Facenet:人脸识别模型在Pytorch当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 accuracy
CASIA-WebFace facenet_mobilenet.pth LFW 160x160 98.23%
CASIA-WebFace facenet_inception_resnetv1.pth LFW 160x160 98.78%

所需环境

pytorch==1.2.0

文件下载

已经训练好的facenet_mobilenet.pth和facenet_inception_resnetv1.pth可以在百度网盘下载。
链接: https://pan.baidu.com/s/1slUYdpskFpUX62WpJeLByA 提取码: fe1w

训练用的CASIA-WebFaces数据集以及评估用的LFW数据集可以在百度网盘下载。
链接: https://pan.baidu.com/s/1fhiHlylAFVoR43yfDbi4Ag 提取码: gkch

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在model_data文件夹里已经有了facenet_mobilenet.pth,可直接运行predict.py输入:
img\1_001.jpg
img\1_002.jpg
  1. 也可以在百度网盘下载facenet_inception_resnetv1.pth,放入model_data,修改facenet.py文件的model_path后,输入:
img\1_001.jpg
img\1_002.jpg

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在facenet.py文件里面,在如下部分修改model_path和backbone使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,backbone对应主干特征提取网络
_defaults = {
    "model_path"    : "model_data/facenet_mobilenet.pth",
    "input_shape"   : (160, 160, 3),
    "backbone"      : "mobilenet",
    "cuda"          : True,
}
  1. 运行predict.py,输入
img\1_001.jpg
img\1_002.jpg

训练步骤

  1. 本文使用如下格式进行训练。
|-datasets
    |-people0
        |-123.jpg
        |-234.jpg
    |-people1
        |-345.jpg
        |-456.jpg
    |-...
  1. 下载好数据集,将训练用的CASIA-WebFaces数据集以及评估用的LFW数据集,解压后放在根目录。
  2. 在训练前利用txt_annotation.py文件生成对应的cls_train.txt。
  3. 利用train.py训练facenet模型,训练前,根据自己的需要选择backbone,model_path和backbone一定要对应。
  4. 运行train.py即可开始训练。

评估步骤

  1. 下载好评估数据集,将评估用的LFW数据集,解压后放在根目录
  2. 在eval_LFW.py设置使用的主干特征提取网络和网络权值。
  3. 运行eval_LFW.py来进行模型准确率评估。

Reference

https://github.com/davidsandberg/facenet
https://github.com/timesler/facenet-pytorch

You might also like...
Comments
  • 训练过程经常遇到BrokenPipeError: [Errno 32] Broken pipe

    训练过程经常遇到BrokenPipeError: [Errno 32] Broken pipe

    Epoch 1/100: 100%|██████████| 583/583 [07:36<00:00, 1.07it/s, accuracy=0.89, lr=0.01, total_CE_loss=9.02, total_triple_loss=0.101]Traceback (most recent call last): File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 404, in _send_bytes self._send(header + buf) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe

    opened by jia0511 1
  • lfw数据集处理有什么区别? 精度目前97%

    lfw数据集处理有什么区别? 精度目前97%

    使用facenet_mobilenet.pth 在 LFW 数据集上,调整图片大小为 160x160 ,得到了0.97的精度,没有到| 98.23%,而在百度网盘提供的slfw数据上,精度可以到98%, 但是我看网页上提供的数据图片大小是96*112,请问下,LFW处理上应用什么其他方法吗?

    Test Epoch: [5888/6000 (96%)]: : 24it [00:32, 1.34s/it] Accuracy: 0.97383+-0.00675 Best_thresholds: 1.16000 Validation rate: 0.82100+-0.03127 @ FAR=0.00100

    opened by xiaomujiang 1
Releases(v2.0)
Owner
Bubbliiiing
Bubbliiiing
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022