HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Overview

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Maintained - Yes Quick Attention Multi Loss Function Encoder-Decoder Network Semantic Segmentation Computational Pathology

Histological Image Segmentation
This repo contains the code to Test and Train the HistoSeg

HistoSeg is an Encoder-Decoder DCNN which utilizes the novel Quick Attention Modules and Multi Loss function to generate segmentation masks from histopathological images with greater accuracy.

Datasets used for trainig HistoSeg

MoNuSeg - Multi-organ nuclei segmentation from H&E stained histopathological images

link: https://monuseg.grand-challenge.org/

GlaS - Gland segmentation in histology images

link: https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/

Trained Weights are available in the repo to test the HistoSeg

For MoNuSeg Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_MoNuSeg_.h5

For GlaS Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_GlaS_.h5

Data Preprocessing for Training

After downloading the dataset you must generate patches of images and their corresponding masks (Ground Truth), & convert it into numpy arrays or you can use dataloaders directly inside the code. you can generate patches using Image_Patchyfy. Link : https://github.com/saadwazir/Image_Patchyfy

For example to train HistoSeg on MoNuSeg Dataset, the distribution of dataset after creating pathes

X_train 1470x256x256x3 
y_train 1470x256x256x1
X_val 686x256x256x3
y_Val 686x256x256x1

Data Preprocessing for Testing

You just need to resize the images and their corresponding masks (Ground Truth) into same size i.e all the samples must have same resolution, and then convert it into numpy arrays.

For example to test HistoSeg on MoNuSeg Dataset, the shapes of dataset after creating numpy arrays are

X_test 14x1000x1000x3 
y_test 14x1000x1000x1

Requirements

pip install matplotlib
pip install seaborn
pip install tqdm
pip install scikit-learn
conda install tensorflow==2.7
pip install keras==2.2.4

Training

To train HistoSeg use the following command

python HistoSeg_Train.py --train_images 'path' --train_masks 'path' --val_images 'path' --val_masks 'path' --width 256 --height 256 --epochs 100 --batch 16

Testing

To test HistoSeg use the following command

python HistoSeg_Test.py --images 'path' --masks 'path' --weights 'path' --width 1000 --height 1000

For example to test HistoSeg on MoNuSeg Dataset with trained weights, use the following command
python HistoSeg_Test.py --images 'X_test_MoNuSeg_14x1000x1000.npy' --masks 'y_test_MoNuSeg_14x1000x1000.npy' --weights 'HistoSeg_MoNuSeg_.h5' --width 1000 --height 1000
Owner
Saad Wazir
Saad Wazir is currently working as a Researcher at Embedded Systems & Pervasive Computing (EPIC) Lab in National University of Computer and Emerging Sciences (F
Saad Wazir
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023