HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Overview

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Maintained - Yes Quick Attention Multi Loss Function Encoder-Decoder Network Semantic Segmentation Computational Pathology

Histological Image Segmentation
This repo contains the code to Test and Train the HistoSeg

HistoSeg is an Encoder-Decoder DCNN which utilizes the novel Quick Attention Modules and Multi Loss function to generate segmentation masks from histopathological images with greater accuracy.

Datasets used for trainig HistoSeg

MoNuSeg - Multi-organ nuclei segmentation from H&E stained histopathological images

link: https://monuseg.grand-challenge.org/

GlaS - Gland segmentation in histology images

link: https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/

Trained Weights are available in the repo to test the HistoSeg

For MoNuSeg Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_MoNuSeg_.h5

For GlaS Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_GlaS_.h5

Data Preprocessing for Training

After downloading the dataset you must generate patches of images and their corresponding masks (Ground Truth), & convert it into numpy arrays or you can use dataloaders directly inside the code. you can generate patches using Image_Patchyfy. Link : https://github.com/saadwazir/Image_Patchyfy

For example to train HistoSeg on MoNuSeg Dataset, the distribution of dataset after creating pathes

X_train 1470x256x256x3 
y_train 1470x256x256x1
X_val 686x256x256x3
y_Val 686x256x256x1

Data Preprocessing for Testing

You just need to resize the images and their corresponding masks (Ground Truth) into same size i.e all the samples must have same resolution, and then convert it into numpy arrays.

For example to test HistoSeg on MoNuSeg Dataset, the shapes of dataset after creating numpy arrays are

X_test 14x1000x1000x3 
y_test 14x1000x1000x1

Requirements

pip install matplotlib
pip install seaborn
pip install tqdm
pip install scikit-learn
conda install tensorflow==2.7
pip install keras==2.2.4

Training

To train HistoSeg use the following command

python HistoSeg_Train.py --train_images 'path' --train_masks 'path' --val_images 'path' --val_masks 'path' --width 256 --height 256 --epochs 100 --batch 16

Testing

To test HistoSeg use the following command

python HistoSeg_Test.py --images 'path' --masks 'path' --weights 'path' --width 1000 --height 1000

For example to test HistoSeg on MoNuSeg Dataset with trained weights, use the following command
python HistoSeg_Test.py --images 'X_test_MoNuSeg_14x1000x1000.npy' --masks 'y_test_MoNuSeg_14x1000x1000.npy' --weights 'HistoSeg_MoNuSeg_.h5' --width 1000 --height 1000
Owner
Saad Wazir
Saad Wazir is currently working as a Researcher at Embedded Systems & Pervasive Computing (EPIC) Lab in National University of Computer and Emerging Sciences (F
Saad Wazir
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022