TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

Related tags

Deep Learningautodsp
Overview

AutoDSP

TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

autodsp

About

Adaptive filtering algorithms are commonplace in signal processing and have wide-ranging applications from single-channel denoising to multi-channel acoustic echo cancellation and adaptive beamforming. Such algorithms typically operate via specialized online, iterative optimization methods and have achieved tremendous success, but require expert knowledge, are slow to develop, and are difficult to customize. In our work, we present a new method to automatically learn adaptive filtering update rules directly from data. To do so, we frame adaptive filtering as a differentiable operator and train a learned optimizer to output a gradient descent-based update rule from data via backpropagation through time. We demonstrate our general approach on an acoustic echo cancellation task (single-talk with noise) and show that we can learn high-performing adaptive filters for a variety of common linear and non-linear multidelayed block frequency domain filter architectures. We also find that our learned update rules exhibit fast convergence, can optimize in the presence of nonlinearities, and are robust to acoustic scene changes despite never encountering any during training.

arXiv: https://arxiv.org/abs/2110.04284

pdf: https://arxiv.org/pdf/2110.04284.pdf

Short video: https://www.youtube.com/watch?v=y51hUaw2sTg

Full video: https://www.youtube.com/watch?v=oe0owGeCsqI

Table of contents

Setup

Clone repo

git clone 
   
    
cd autodsp

   

Get The Data

# Install Git LFS if needed
git lfs install

# Move into folder that is one above 
   
    
cd 
    
     /../

# Clone MS data
git clone https://github.com/microsoft/AEC-Challenge AEC-Challenge


    
   

Configure Environment

First, edit the config file to point to the dataset you downloaded.

vim ./autodsp/__config__.py

Next, setup your anaconda environment

# Create a conda environment
conda create -n autodsp python=3.7

# Activate the environment
conda activate autodsp

# Install some tools
conda install -c conda-forge cudnn pip

# Install JAX
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

# Install Haiku
pip install git+https://github.com/deepmind/dm-haiku

# Install pytorch for the dataloader
conda install pytorch cpuonly -c pytorch

You can also check out autodsp.yaml, the export from our conda environment. We found the most common culprit for jax or CUDA errors was a CUDA/cuDNN version mismatch. You can find more details on this in the jax official repo https://github.com/google/jax.

Install AutoDSP

cd autodsp
pip install -e ./

This will automatically install the dependeicies in setup.py.

Running an Experiment

# move into the experiment directory
cd experiments

The entry point to train and test models is jax_run.py. jax_run.py pulls configuration files from jax_train_config.py. The general format for launching a training run is

python jax_run.py --cfg 
   
     --GPUS 
     

    
   

where is a config specified in jax_train_config.py, is something like 0 1. You can automatically send logs to Weights and Biases by appending --wandb. This run will automatically generate a /ckpts/ directory and log checkpoints to it. You can grab a checkpoint and run it on the test set via

python jax_run.py --cfg 
   
     --GPUS 
    
      --epochs 
     
       --eval 

     
    
   

where is the same as training and is a single epoch like 100 or a list of epochs like 100, 200, 300. Running evaluation will also automatically dump a .pkl file with metrics in the same directory as the checkpoint.

An explicit example is

# run the training
python jax_run.py --cfg v2_filt_2048_1_hop_1024_lin_1e4_log_24h_10unroll_2deep_earlystop_echo_noise 
                --GPUS 0 1 2 3

# run evaluation on the checkpoint from epoch 100
python jax_run.py --cfg v2_filt_2048_1_hop_1024_lin_1e4_log_24h_10unroll_2deep_earlystop_echo_noise 
                --GPUS 0 --eval --epochs 100

You can find all the configurations from our paper in the jax_train_config.py file. Training can take up to a couple days depending on model size but will automatically stop when it hits the max epoch count or validation performance stops improving.

Copyright and license

University of Illinois Open Source License

Copyright © 2021, University of Illinois at Urbana Champaign. All rights reserved.

Developed by: Jonah Casebeer 1, Nicholas J. Bryan 2 and Paris Smaragdis 1,2

1: University of Illinois at Urbana-Champaign

2: Adobe Research

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal with the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers in the documentation and/or other materials provided with the distribution. Neither the names of Computational Audio Group, University of Illinois at Urbana-Champaign, nor the names of its contributors may be used to endorse or promote products derived from this Software without specific prior written permission. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

Owner
Jonah Casebeer
CS Ph.D. student at UIUC
Jonah Casebeer
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022