BC3407-Group-5-Project - BC3407 Group Project With Python

Overview

BC3407-Group-5-Project

As the world struggles to contain the ever-changing variants of COVID-19, healthcare industry is facing tremendous stress from issues arising from different aspects. One significant issue is on resource allocation and utilization. Building additional hospital facility may not be a viable solution in a land scarce country like Singapore. One long standing problem among resource utilization is due to missed appointments. When patients do not show up following their appointment time, the missed appointment results in a waste of resources that have been scheduled and planned. There has not been good solution in reducing the no-show rates. In some, the rates are not even been tracked or computed.

You are to create a Python-based program that can be useful for healthcare industry in tackling this issue. This program is a prototype or proof-of-concept to path the implementation for subsequent development solution to be integrated to the existing system. You are given a sample dataset to start with. It comes with past records of patients who show-up or did not show-up for the appointment in a clinic. You can use it as a start, to develop a suitable solution to provide insights to healthcare professionals. The solution can be a dashboard, web-based or command prompt program. The objective is to apply what you have learnt in this course into this problem domain.

The following table displays the first 5 records from the attached dataset “appointmentData.csv”. It includes the age and gender information of patients. Followed by the time they registered for the appointment and the appointment time details. The day name of appointment is reflected. The other details like their health condition, and other relevant features are also captured. The last column “Show Up” denotes if the patient shows up for the medical appointment.

image

Below are some questions you can try to answer or features you can try to include, you can address one or more of the following or suggest other relevant questions:

  1.     How is the overall picture of no shows over the period?
    
  2.     No-show made up of how many percent of the given data?
    
  3.     What kind of people or age group likely to no-show? Or it’s random?
    
  4.     Does sending reminder helps with reducing no-show?
    
  5.     Provide appropriate dashboard or visualization features to summarize the given data set for viewing.
    
  6.     Suggest or implement suitable features that can help with reducing no-show or highlight patients more likely to no-show with additional reminders or etc?
    

Alternatively, you can look for additional dataset that can help with understanding or tackling this issue or for better resource planning in healthcare. For example, the healthcare resources data, infection rates, chronic disease rates etc. You can make assumptions on information not stated in this requirements, or target a certain specialist clinic.

All work must be done in the Python programming language.

Deliverables: Prepare a zip file (in .zip format only) containing the relevant deliverables below:

  • Report: One word or pdf file containing the proof-of-concept prototype with the following content: -- Work/responsibility distribution. Which team members in charge of which part of the program. -- Objective of the project and how it addresses the issue. -- Features/Functionalities designed for the prototype. -- User manual with print screens from the prototype to illustrate how to use this project's program; consider different user roles. -- Include the links to recording, i,e. the hyperlinks to every group member’s individual recorded videos. Do not submit video files, submit only hyperlink.
  • One folder containing additional dataset (if any), all working files.

One group submit one copy of the above. Submission box will be opened in Week 11. All works submitted will go through plagiarism checker. Submitting work done by others will result in failing the module directly.

No presentation nor lesson on week 13, you are to prepare the recording beforehand and submit before due date. Recording replaces class presentation. The duration of each group member’s individual recording should be about 2 to 3 minutes maximum. You are advised to adhere to the time limit strictly or penalty will be imposed. In the individual video, you are required to reflect on your contribution to the group project, what you have done for the project, what have you learnt from the project. Each group member will record his/her own video and ensure that the hyperlink to the video is included on the first page of the report submitted by the group. You can use Zoom, Teams or YouTube for recording. If you use other software to record into mp4 file, upload online to Youtube, OneDrive or other cloud storage (Do not submit video files). In the case of Youtube, indicate as restricted, and submit only the link information. Include the link information (one link for each team member) in your report.

You are required to submit a peer evaluation form online individually at the end of the semester. Individual peer evaluation submission is compulsory for all team members. An online peer evaluation system will be opened nearer to the submission date.

Good project outcome is the end product of good teamwork. We hope to see all team members contribute equally. The peer evaluation will be considered in evaluating the project grade should the contribution be significantly unequal. Submission will be kept confidential.

Due Date: Week 13 Wednesday (13 Apr 2022, 7 p.m.)

Reference: Zoom Recording: Registering your NTU Zoom account (If you have not done so. Quick Start Guide for NTU Zoom Account.pdf) Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Video Guide on Recording Teams Recording: Zoom Login & Create Meeting (See Quick Start Guide for Online Meetings with Zoom.pdf) Online Guide on Recording: https://support.microsoft.com/en-us/office/record-a-meeting-in-teams-34dfbe7f-b07d-4a27-b4c6-de62f1348c24

NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022