[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Overview

Contextual Action Language Model (CALM) and the ClubFloyd Dataset

Code and data for paper Keep CALM and Explore: Language Models for Action Generation in Text-based Games at EMNLP 2020.

Overview

Our ClubFloyd dataset (calm/lm_data.zip) is crawled from the ClubFloyd website and contains 426 human gameplay transcripts, which cover 590 text-based games of diverse genres and styles.

The data consists of 223,527 context-action pairs in the format [CLS] observation [SEP] action [SEP] next observation [SEP] next action [SEP]. We use [CLS] observation [SEP] action [SEP] next observation [SEP] as the context to train language models (n-gram, GPT-2) to predict next action [SEP], and show that this action generation ability generalizes to unseen games and supports gameplay when combined with reinforcement learning.

Getting Started

  • Clone repo and install dependencies:
pip install torch==1.4 transformers==2.5.1 jericho fasttext wandb importlib_metadata
git clone https://github.com/princeton-nlp/calm-textgame && cd calm-textgame
ln -s ../lm calm && ln -s ../lm drrn

(If the pip installation fails for fasttext, try the build steps here: https://github.com/facebookresearch/fastText#building-fasttext-for-python)

  • Train CALM:
cd calm
unzip lm_data.zip
python train.py

Trained model weights can be downloaded here for both GPT-2 and n-gram models.

  • Then train DRRN using the trained CALM:
cd ../drrn
python train.py --rom_path ../games/${GAME} --lm_path ${PATH_TO_CALM} --lm_type ${gpt_or_ngram}
  • To quickly try out the GPT-2 CALM model:
from lm import GPT2LM
model = GPT2LM("model_weights/gpt2")
print(model.generate("[CLS] observation [SEP] action [SEP] next observation [SEP]", k=30))

Citation

@inproceedings{yao2020calm,
    title={Keep CALM and Explore: Language Models for Action Generation in Text-based Games},
    author={Yao, Shunyu and Rao, Rohan and Hausknecht, Matthew and Narasimhan, Karthik},
    booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
    year={2020}
}

Acknowledgements

Thanks Jacqueline for hosting the wonderful ClubFloyd website and granting our use!

The code borrows from TDQN (for the RL part) and Huggingface Transformers (for the CALM part).

For any questions please contact Shunyu Yao <[email protected]>.

Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023