Pytorch Implementation of Residual Vision Transformers(ResViT)

Related tags

Deep LearningResViT
Overview

ResViT

Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper:

Onat Dalmaz and Mahmut Yurt and Tolga Çukur ResViT: Residual vision transformers for multi-modal medical image synthesis. arXiv. 2021.

Dependencies

python>=3.6.9
torch>=1.7.1
torchvision>=0.8.2
visdom
dominate
cuda=>11.2

Installation

  • Clone this repo:
git clone https://github.com/icon-lab/ResViT
cd ResViT

Download pre-trained ViT models from Google

wget https://storage.googleapis.com/vit_models/imagenet21k/R50-ViT-B_16.npz &&
mkdir ../model/vit_checkpoint/imagenet21k &&
mv {MODEL_NAME}.npz ../model/vit_checkpoint/imagenet21k/R50-ViT-B_16.npz

Dataset

You should structure your aligned dataset in the following way:

/Datasets/BRATS/
  ├── T1_T2
  ├── T2_FLAIR
  .
  .
  ├── T1_FLAIR_T2   
/Datasets/BRATS/T2__FLAIR/
  ├── train
  ├── val  
  ├── test   

Note that for many-to-one tasks, source modalities should be in the Red and Green channels. (For 2 input modalities)

Pre-training of ART blocks without the presence of transformers

For many-to-one tasks:
python3 train.py --dataroot Datasets/IXI/T1_T2__PD/ --name T1_T2_PD_IXI_pre_trained --gpu_ids 0 --model resvit_many --which_model_netG res_cnn --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 3 --loadSize 256 --fineSize 256 --niter 50 --niter_decay 50 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0

For one-to-one tasks:
python3 train.py --dataroot Datasets/IXI/T1_T2/ --name T1_T2_IXI_pre_trained --gpu_ids 0 --model resvit_one --which_model_netG res_cnn --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 1 --loadSize 256 --fineSize 256 --niter 50 --niter_decay 50 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0

Fine tune ResViT

For many-to-one tasks:
python3 train.py --dataroot Datasets/IXI/T1_T2__PD/ --name T1_T2_PD_IXI_resvit --gpu_ids 0 --model resvit_many --which_model_netG resvit --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 3 --loadSize 256 --fineSize 256 --niter 25 --niter_decay 25 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0 --pre_trained_transformer 1 --pre_trained_resnet 1 --pre_trained_path checkpoints/T1_T2_PD_IXI_pre_trained/latest_net_G.pth --lr 0.001

For one-to-one tasks:
python3 train.py --dataroot Datasets/IXI/T1_T2/ --name T1_T2_IXI_resvit --gpu_ids 0 --model resvit_one --which_model_netG resvit --which_direction AtoB --lambda_A 100 --dataset_mode aligned --norm batch --pool_size 0 --output_nc 1 --input_nc 1 --loadSize 256 --fineSize 256 --niter 25 --niter_decay 25 --save_epoch_freq 5 --checkpoints_dir checkpoints/ --display_id 0 --pre_trained_transformer 1 --pre_trained_resnet 1 --pre_trained_path checkpoints/T1_T2_IXI_pre_trained/latest_net_G.pth --lr 0.001

Testing

For many-to-one tasks:
python3 test.py --dataroot Datasets/IXI/T1_T2__PD/ --name T1_T2_PD_IXI_resvit --gpu_ids 0 --model resvit_many --which_model_netG resvit --dataset_mode aligned --norm batch --phase test --output_nc 1 --input_nc 3 --how_many 10000 --serial_batches --fineSize 256 --loadSize 256 --results_dir results/ --checkpoints_dir checkpoints/ --which_epoch latest

For one-to-one tasks:
python3 test.py --dataroot Datasets/IXI/T1_T2/ --name T1_T2_IXI_resvit --gpu_ids 0 --model resvit_one --which_model_netG resvit --dataset_mode aligned --norm batch --phase test --output_nc 1 --input_nc 1 --how_many 10000 --serial_batches --fineSize 256 --loadSize 256 --results_dir results/ --checkpoints_dir checkpoints/ --which_epoch latest

Citation

You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.

@misc{dalmaz2021resvit,
      title={ResViT: Residual vision transformers for multi-modal medical image synthesis}, 
      author={Onat Dalmaz and Mahmut Yurt and Tolga Çukur},
      year={2021},
      eprint={2106.16031},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

For any questions, comments and contributions, please contact Onat Dalmaz (onat[at]ee.bilkent.edu.tr)

(c) ICON Lab 2021

Acknowledgments

This code uses libraries from pGAN and pix2pix repository.

Owner
ICON Lab
ICON Lab
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022