Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Overview

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Getting Started

Install requirements with Anaconda:

conda env create -f environment.yml

Activate the conda environment

conda activate tvae

Install the tvae package

Install the tvae package inside of your conda environment. This allows you to run experiments with the tvae command. At the root of the project directory run (using your environment's pip): pip3 install -e .

If you need help finding your environment's pip, try which python, which should point you to a directory such as .../anaconda3/envs/tvae/bin/ where it will be located.

(Optional) Setup Weights & Biases:

This repository uses Weight & Biases for experiment tracking. By deafult this is set to off. However, if you would like to use this (highly recommended!) functionality, all you have to do is set 'wandb_on': True in the experiment config, and set your account's project and entity names in the tvae/utils/logging.py file.

For more information on making a Weight & Biases account see (creating a weights and biases account) and the associated quickstart guide.

Running an experiment

To evaluate the selectivity of pretrained alexnet (the non-topographic baseline), you can run:

  • tvae --name 'ffa_modeling_pretrained_alexnet'

To train and evaluate the selectivity of the TVAE for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_fc6'

To train and evaluate the selectivity of the the TDANN for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_tdann'

To evaluate the selectivity of the TVAE on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_fc6_functional'

To evaluate the selectivity of the TDANN on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_tdann_functional'

These 'functional' experiment files can also be easily modified to test selectivity to big vs. small objects by simply changing the directories of the input images.

Basics of the framework

  • All experiments can be found in tvae/experiments/, and begin with the model specification, followed by the experiment config.

Model Architecutre Options

  • 'mu_init': int, Initalization value for mu parameter
  • 's_dim': int, Dimensionality of the latent space
  • 'k': int, size of the summation kernel used to define the local topographic structure
  • 'group_kernel': tuple of int, defines the size of the kernel used by the grouper, exact definition and relationship to W varies for each experiment.

Training Options

  • 'wandb_on': bool, if True, use weights & biases logging
  • 'lr': float, learning rate
  • 'momentum': float, standard momentum used in SGD
  • 'max_epochs': int, total training epochs
  • 'eval_epochs': int, epochs between evaluation on the test (for MNIST)
  • 'batch_size': int, number of samples per batch
  • 'n_is_samples': int, number of importance samples when computing the log-likelihood on MNIST.
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Woosung Choi 63 Nov 14, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022