Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Overview

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Getting Started

Install requirements with Anaconda:

conda env create -f environment.yml

Activate the conda environment

conda activate tvae

Install the tvae package

Install the tvae package inside of your conda environment. This allows you to run experiments with the tvae command. At the root of the project directory run (using your environment's pip): pip3 install -e .

If you need help finding your environment's pip, try which python, which should point you to a directory such as .../anaconda3/envs/tvae/bin/ where it will be located.

(Optional) Setup Weights & Biases:

This repository uses Weight & Biases for experiment tracking. By deafult this is set to off. However, if you would like to use this (highly recommended!) functionality, all you have to do is set 'wandb_on': True in the experiment config, and set your account's project and entity names in the tvae/utils/logging.py file.

For more information on making a Weight & Biases account see (creating a weights and biases account) and the associated quickstart guide.

Running an experiment

To evaluate the selectivity of pretrained alexnet (the non-topographic baseline), you can run:

  • tvae --name 'ffa_modeling_pretrained_alexnet'

To train and evaluate the selectivity of the TVAE for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_fc6'

To train and evaluate the selectivity of the the TDANN for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_tdann'

To evaluate the selectivity of the TVAE on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_fc6_functional'

To evaluate the selectivity of the TDANN on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_tdann_functional'

These 'functional' experiment files can also be easily modified to test selectivity to big vs. small objects by simply changing the directories of the input images.

Basics of the framework

  • All experiments can be found in tvae/experiments/, and begin with the model specification, followed by the experiment config.

Model Architecutre Options

  • 'mu_init': int, Initalization value for mu parameter
  • 's_dim': int, Dimensionality of the latent space
  • 'k': int, size of the summation kernel used to define the local topographic structure
  • 'group_kernel': tuple of int, defines the size of the kernel used by the grouper, exact definition and relationship to W varies for each experiment.

Training Options

  • 'wandb_on': bool, if True, use weights & biases logging
  • 'lr': float, learning rate
  • 'momentum': float, standard momentum used in SGD
  • 'max_epochs': int, total training epochs
  • 'eval_epochs': int, epochs between evaluation on the test (for MNIST)
  • 'batch_size': int, number of samples per batch
  • 'n_is_samples': int, number of importance samples when computing the log-likelihood on MNIST.
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022