A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

Overview

PFN (Partition Filter Network)

This repository contains codes of the official implementation for the paper A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021 [PDF] [PPT]

Quick links

Model Overview

In this work, we present a new framework equipped with a novel recurrent encoder named partition filter encoder designed for multi-task learning. The encoder enforces bilateral interaction between NER and RE in two ways:

  1. The shared partition represents inter-task information and is equally accessible to both tasks, allowing for balanced interaction between NER and RE.
  2. The task partitions represent intra-task information and are formed through concerted efforts of entity and relation gates, making sure that encoding process of entity and relation features are dependent upon each other.

Preparation

Environment Setup

The experiments were performed using one single NVIDIA-RTX3090 GPU. The dependency packages can be installed with the following command:

pip install -r requirements.txt

Also, make sure that the python version is 3.7.10

Data Acquisition and Preprocessing

This is the first work that covers all the mainstream English datasets for evaluation, including [NYT, WEBNLG, ADE, ACE2005, ACE2004, SCIERC, CONLL04]. Please follow the instructions of reademe.md in each dataset folder in ./data/ for data acquisition and preprocessing.

Custom Dataset

If your custom dataset has a large number of triples that contain head-overlap entities (common in Chinese dataset), accuracy of the orignal PFN will not be good.

The orignal one will not be able to decode triples with head-overlap entities. For example, if New York and New York City are both entities, and there exists a RE prediction such as (new, cityof, USA), we cannot know what New corresponds to.

Luckily, the impact on evaluation of English dataset is limited, since such triple is either filtered out (for ADE) or rare (one in test set of SciERC, one in ACE04, zero in other datasets).

You can use our updated PFN-nested to handle the issue. PFN-nested is an enhanced version of PFN. This model is better in leveraging entity tail information and capable of handling nested triple prediction. For usage, replace the files in the root directory with the files in the PFN-nested folder, then follow the directions in Quick Start.

Performance comparison in SciERC

Model NER RE
PFN 66.8 38.4
PFN-nested 67.9 38.7

Quick Start

Model Training

The training command-line is listed below (command for CONLL04 is in Evaluation on CoNLL04):

python main.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--do_train \
--do_eval \
--embed_mode ${bert_cased/albert/scibert} \
--batch_size ${20 (for most datasets) /4 (for SCIERC)} \
--lr ${0.00002 (for most datasets) /0.00001 (for SCIERC)} \
--output_file ${the name of your output files, e.g. ace_test} \
--eval_metric ${micro/macro} 

After training, you will obtain three files in the ./save/${output_file}/ directory:

  • ${output_file}.log records the logging information.
  • ${output_file}.txt records loss, NER and RE results of dev set and test set for each epoch.
  • ${output_file}.pt is the saved model with best average F1 results of NER and RE in the dev set.

Evaluation on Pre-trained Model

The evaluation command-line is listed as follows:

python eval.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--eval_metric ${micro/macro} \
--model_file ${the path of saved model you want to evaluate. e.g. save/ace_test.pt} \
--embed_mode ${bert_cased/albert/scibert}

Inference on Customized Input

If you want to evaluate the model with customized input, please run the following code:

python inference.py \
--model_file ${the path of your saved model} \
--sent ${sentence you want to evaluate, str type restricted}

{model_file} must contain information about the datasets the model trained on (web/nyt/ade/ace/sci) and the type of pretrained embedding the model uses (albert/bert/scibert). For example, model_file could be set as "web_bert.pt"

Example

input:
python inference.py \
--model_file save/sci_test_scibert.pt \
--sent "In this work , we present a new framework equipped with a novel recurrent encoder   
        named partition filter encoder designed for multi-task learning ."

result:
entity_name: framework, entity type: Generic
entity_name: recurrent encoder, entity type: Method
entity_name: partition filter encoder, entity type: Method
entity_name: multi-task learning, entity type: Task
triple: recurrent encoder, Used-for, framework
triple: recurrent encoder, Part-of, framework
triple: recurrent encoder, Used-for, multi-task learning
triple: partition filter encoder, Hyponym-of, recurrent encoder
triple: partition filter encoder, Used-for, multi-task learning



input:  
python inference.py \
--model_file save/ace_test_albert.pt \
--sent "As Williams was struggling to gain production and an audience for his work in the late 1930s ,  
        he worked at a string of menial jobs that included a stint as caretaker on a chicken ranch in   
        Laguna Beach , California . In 1939 , with the help of his agent Audrey Wood , Williams was 
        awarded a $1,000 grant from the Rockefeller Foundation in recognition of his play Battle of 
        Angels . It was produced in Boston in 1940 and was poorly received ."

result:
entity_name: Williams, entity type: PER
entity_name: audience, entity type: PER
entity_name: his, entity type: PER
entity_name: he, entity type: PER
entity_name: caretaker, entity type: PER
entity_name: ranch, entity type: FAC
entity_name: Laguna Beach, entity type: GPE
entity_name: California, entity type: GPE
entity_name: his, entity type: PER
entity_name: agent, entity type: PER
entity_name: Audrey Wood, entity type: PER
entity_name: Williams, entity type: PER
entity_name: Rockefeller Foundation, entity type: ORG
entity_name: his, entity type: PER
entity_name: Boston, entity type: GPE
triple: caretaker, PHYS, ranch
triple: ranch, PART-WHOLE, Laguna Beach
triple: Laguna Beach, PART-WHOLE, California

Evaluation on CoNLL04

We also run the test on the dataset CoNLL04, but we did not report the results in our paper due to several reasons:

The command for running CoNLL04 is listed below:

python main.py \
--data CONLL04 \
--do_train \
--do_eval \
--embed_mode albert \
--batch_size 10 \
--lr 0.00002 \
--output_file ${the name of your output files} \
--eval_metric micro \
--clip 1.0 \
--epoch 200

Pre-trained Models and Training Logs

We provide you with pre-trained models for NYT/WEBNLG/ACE2005/ACE2004/SCIERC/CONLL04, along with recorded results of each epoch, identical with training results under the specified configurations above.

Download Links

Due to limited space in google drive, 10-fold model files for ADE are not available to you (training record still available).

After downloading the linked files below, unzip them and put ${data}_test.pt in the directory of ./save/ before running eval.py. Also, ${data}_test.txt and ${data}_test.log records the results of each epoch. You should check that out as well.

Dataset File Size Embedding Download
NYT 393MB Bert-base-cased Link
WebNLG 393MB Bert-base-cased Link
ACE05 815MB Albert-xxlarge-v1 Link
ACE04 3.98GB Albert-xxlarge-v1 Link
SciERC 399MB Scibert-uncased Link
ADE 214KB Bert + Albert Link
CoNLL04 815MB Albert-xxlarge-v1 Link

Result Display

F1 results on NYT/WebNLG/ACE05/SciERC:

Dataset Embedding NER RE
NYT Bert-base-cased 95.8 92.4
WebNLG Bert-base-cased 98.0 93.6
ACE05 Albert-xxlarge-v1 89.0 66.8
SciERC Scibert-uncased 66.8 38.4

F1 results on ACE04:

5-fold 0 1 2 3 4 Average
Albert-NER 89.7 89.9 89.5 89.7 87.6 89.3
Albert-RE 65.5 61.4 63.4 61.5 60.7 62.5

F1 results on CoNLL04:

Model Embedding Micro-NER Micro-RE
Table-sequence Albert-xxlarge-v1 90.1 73.6
PFN Albert-xxlarge-v1 89.6 75.0

F1 results on ADE:

10-fold 0 1 2 3 4 5 6 7 8 9 Average
Bert-NER 89.6 92.3 90.3 88.9 88.8 90.2 90.1 88.5 88.0 88.9 89.6
Bert-RE 80.5 85.8 79.9 79.4 79.3 80.5 80.0 78.1 76.2 79.8 80.0
Albert-NER 91.4 92.9 91.9 91.5 90.7 91.6 91.9 89.9 90.6 90.7 91.3
Albert-RE 83.9 86.8 82.8 83.2 82.2 82.4 84.5 82.3 81.9 82.2 83.2

Robustness Against Input Perturbation

We use robustness test to evaluate our model under adverse circumstances. In this case, we use the domain transformation methods of NER from Textflint.

The test files can be found in the folder of ./robustness_data/. Our reported results are evaluated with the linked ACE2005-albert model above. For each test file, move it to ./data/ACE2005/ and rename it as test_triples.json, then run eval.py with the instructions above.

Citation

Please cite our paper if it's helpful to you in your research.

@misc{yan2021partition,
      title={A Partition Filter Network for Joint Entity and Relation Extraction}, 
      author={Zhiheng Yan and Chong Zhang and Jinlan Fu and Qi Zhang and Zhongyu Wei},
      year={2021},
      eprint={2108.12202},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
zhy
Knowledge Graph, Information Extraction, Interpretability of NLP System
zhy
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023