Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

Overview

You Only Cut Once (YOCO)

YOCO is a simple method/strategy of performing augmentations, which enjoys the properties of parameter-free, easy usage, and boosting almost all augmentations for free (negligible computation & memory cost). We hope our study will attract the community’s attention in revisiting how to perform data augmentations.

You Only Cut Once: Boosting Data Augmentation with a Single Cut
Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Ali Armin, Ian Reid, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University and University of Adelaide
Preprint

@inproceedings{han2022yoco,
  title={You Only Cut Once: Boosting Data Augmentation with a Single Cut},
  author={Junlin Han and Pengfei Fang and Weihao Li and Jie Hong and Mohammad Ali Armin and and Ian Reid and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2201.12078},
  year={2022}
}

YOCO cuts one image into two equal pieces, either in the height or the width dimension. The same data augmentations are performed independently within each piece. Augmented pieces are then concatenated together to form one single augmented image.  

Results

Overall, YOCO benefits almost all augmentations in multiple vision tasks (classification, contrastive learning, object detection, instance segmentation, image deraining, image super-resolution). Please see our paper for more.

Easy usages

Applying YOCO is quite easy, here is a demo code of performing YOCO at the batch level.

***
images: images to be augmented, here is tensor with (b,c,h,w) shape
aug: composed augmentation operations
h: height of images
w: width of images
***

def YOCO(images, aug, h, w):
    images = torch.cat((aug(images[:, :, :, 0:int(w/2)]), aug(images[:, :, :, int(w/2):w])), dim=3) if \
    torch.rand(1) > 0.5 else torch.cat((aug(images[:, :, 0:int(h/2), :]), aug(images[:, :, int(h/2):h, :])), dim=2)
    return images
    
for i, (images, target) in enumerate(train_loader):    
    aug = torch.nn.Sequential(
      transforms.RandomHorizontalFlip(), )
    _, _, h, w = images.shape
    # perform augmentations with YOCO
    images = YOCO(images, aug, h, w) 

Prerequisites

This repo aims to be minimal modifications on official PyTorch ImageNet training code and MoCo. Following their instructions to install the environments and prepare the datasets.

timm is also required for ImageNet classification, simply run

pip install timm

Images augmented with YOCO

For each quadruplet, we show the original input image, augmented image from image-level augmentation, and two images from different cut dimensions produced by YOCO.

Contact

[email protected] or [email protected]

If you tried YOCO in other tasks/datasets/augmentations, please feel free to let me know the results. They will be collected and presented in this repo, regardless of positive or negative. Many thanks!

Acknowledgments

Our code is developed based on official PyTorch ImageNet training code and MoCo.

Owner
ANU/CSIRO/AIML/U Adelaide. Working on vision/graphics. Email: [email
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022