Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Overview

Large-Scale Long-Tailed Recognition in an Open World

[Project] [Paper] [Blog]

Overview

Open Long-Tailed Recognition (OLTR) is the author's re-implementation of the long-tail recognizer described in:
"Large-Scale Long-Tailed Recognition in an Open World"
Ziwei Liu*Zhongqi Miao*Xiaohang ZhanJiayun WangBoqing GongStella X. Yu  (CUHK & UC Berkeley / ICSI)  in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019, Oral Presentation

Further information please contact Zhongqi Miao and Ziwei Liu.

Update notifications

  • 03/04/2020: We changed all valirables named selfatt to modulatedatt so that the attention module can be properly trained in the second stage for Places-LT. ImageNet-LT does not have this problem since the weights are not freezed. We have updated new results using fixed code, which is still better than reported. The weights are also updated. Thanks!
  • 02/11/2020: We updated configuration files for Places_LT dataset. The current results are a little bit higher than reported, even with updated F-measure calculation. One important thing to be considered is that we have unfrozon the model weights for the first stage training of Places-LT, which means it is not suitable for single-GPU training in most cases (we used 4 1080ti in our implementation). However, for the second stage, since the memory and center loss do not support multi-GPUs currently, please switch back to single-GPU training. Thank you very much!
  • 01/29/2020: We updated the False Positive calculation in util.py so that the numbers are normal again. The reported F-measure numbers in the paper might be a little bit higher than actual numbers for all baselines. We will update it as soon as possible. We have updated the new F-measure number in the following table. Thanks.
  • 12/19/2019: Updated modules with 'clone()' methods and set use_fc in ImageNet-LT stage-1 config to False. Currently, the results for ImageNet-LT is comparable to reported numbers in the paper (a little bit better), and the reproduced results are updated below. We also found the bug in Places-LT. We will update the code and reproduced results as soon as possible.
  • 08/05/2019: Fixed a bug in utils.py. Update re-implemented ImageNet-LT weights at the end of this page.
  • 05/02/2019: Fixed a bug in run_network.py so the models train properly. Update configuration file for Imagenet-LT stage 1 training so that the results from the paper can be reproduced.

Requirements

Data Preparation

NOTE: Places-LT dataset have been updated since the first version. Please download again if you have the first version.

  • First, please download the ImageNet_2014 and Places_365 (256x256 version). Please also change the data_root in main.py accordingly.

  • Next, please download ImageNet-LT and Places-LT from here. Please put the downloaded files into the data directory like this:

data
  |--ImageNet_LT
    |--ImageNet_LT_open
    |--ImageNet_LT_train.txt
    |--ImageNet_LT_test.txt
    |--ImageNet_LT_val.txt
    |--ImageNet_LT_open.txt
  |--Places_LT
    |--Places_LT_open
    |--Places_LT_train.txt
    |--Places_LT_test.txt
    |--Places_LT_val.txt
    |--Places_LT_open.txt

Download Caffe Pre-trained Models for Places_LT Stage_1 Training

  • Caffe pretrained ResNet152 weights can be downloaded from here, and save the file to ./logs/caffe_resnet152.pth

Getting Started (Training & Testing)

ImageNet-LT

  • Stage 1 training:
python main.py --config ./config/ImageNet_LT/stage_1.py
  • Stage 2 training:
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py
  • Close-set testing:
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py --test
  • Open-set testing (thresholding)
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py --test_open
  • Test on stage 1 model
python main.py --config ./config/ImageNet_LT/stage_1.py --test

Places-LT

  • Stage 1 training (At this stage, multi-GPU might be necessary since we are finetuning a ResNet-152.):
python main.py --config ./config/Places_LT/stage_1.py
  • Stage 2 training (At this stage, only single-GPU is supported, please switch back to single-GPU training.):
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py
  • Close-set testing:
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py --test
  • Open-set testing (thresholding)
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py --test_open

Reproduced Benchmarks and Model Zoo (Updated on 03/05/2020)

ImageNet-LT Open-Set Setting

Backbone Many-Shot Medium-Shot Few-Shot F-Measure Download
ResNet-10 44.2 35.2 17.5 44.6 model

Places-LT Open-Set Setting

Backbone Many-Shot Medium-Shot Few-Shot F-Measure Download
ResNet-152 43.7 40.2 28.0 50.0 model

CAUTION

The current code was prepared using single GPU. The use of multi-GPU can cause problems except for the first stage of Places-LT.

License and Citation

The use of this software is released under BSD-3.

@inproceedings{openlongtailrecognition,
  title={Large-Scale Long-Tailed Recognition in an Open World},
  author={Liu, Ziwei and Miao, Zhongqi and Zhan, Xiaohang and Wang, Jiayun and Gong, Boqing and Yu, Stella X.},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}
Owner
Zhongqi Miao
Zhongqi Miao
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022