Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Overview

Documentation Status

Lbl2Vec

Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embedded label, document and word vectors and returns documents of topics modeled by manually predefined keywords. Once you train the Lbl2Vec model you can:

  • Classify documents as related to one of the predefined topics.
  • Get similarity scores for documents to each predefined topic.
  • Get most similar predefined topic of documents.

See the paper for more details on how it works.

Corresponding Medium post describing the use of Lbl2Vec for unsupervised text classification can be found here.

Benefits

  1. No need to label the whole document dataset for classification.
  2. No stop word lists required.
  3. No need for stemming/lemmatization.
  4. Works on short text.
  5. Creates jointly embedded label, document, and word vectors.

How does it work?

The key idea of the algorithm is that many semantically similar keywords can represent a topic. In the first step, the algorithm creates a joint embedding of document and word vectors. Once documents and words are embedded in a vector space, the goal of the algorithm is to learn label vectors from previously manually defined keywords representing a topic. Finally, the algorithm can predict the affiliation of documents to topics from document vector <-> label vector similarities.

The Algorithm

0. Use the manually defined keywords for each topic of interest.

Domain knowledge is needed to define keywords that describe topics and are semantically similar to each other within the topics.

Basketball Soccer Baseball
NBA FIFA MLB
Basketball Soccer Baseball
LeBron Messi Ruth
... ... ...

1. Create jointly embedded document and word vectors using Doc2Vec.

Documents will be placed close to other similar documents and close to the most distinguishing words.

2. Find document vectors that are similar to the keyword vectors of each topic.

Each color represents a different topic described by the respective keywords.

3. Clean outlier document vectors for each topic.

Red documents are outlier vectors that are removed and do not get used for calculating the label vector.

4. Compute the centroid of the outlier cleaned document vectors as label vector for each topic.

Points represent the label vectors of the respective topics.

5. Compute label vector <-> document vector similarities for each label vector and document vector in the dataset.

Documents are classified as topic with the highest label vector <-> document vector similarity.

Installation

pip install lbl2vec

Usage

For detailed information visit the Lbl2Vec API Guide and the examples.

from lbl2vec import Lbl2Vec

Learn new model from scratch

Learns word vectors, document vectors and label vectors from scratch during Lbl2Vec model training.

# init model
model = Lbl2Vec(keywords_list=descriptive_keywords, tagged_documents=tagged_docs)
# train model
model.fit()

Important parameters:

  • keywords_list: iterable list of lists with descriptive keywords of type str. For each label at least one descriptive keyword has to be added as list of str.
  • tagged_documents: iterable list of gensim.models.doc2vec.TaggedDocument elements. If you wish to train a new Doc2Vec model this parameter can not be None, whereas the doc2vec_model parameter must be None. If you use a pretrained Doc2Vec model this parameter has to be None. Input corpus, can be simply a list of elements, but for larger corpora, consider an iterable that streams the documents directly from disk/network.

Use word and document vectors from pretrained Doc2Vec model

Uses word vectors and document vectors from a pretrained Doc2Vec model to learn label vectors during Lbl2Vec model training.

# init model
model = Lbl2Vec(keywords_list=descriptive_keywords, doc2vec_model=pretrained_d2v_model)
# train model
model.fit()

Important parameters:

  • keywords_list: iterable list of lists with descriptive keywords of type str. For each label at least one descriptive keyword has to be added as list of str.
  • doc2vec_model: pretrained gensim.models.doc2vec.Doc2Vec model. If given a pretrained Doc2Vec model, Lbl2Vec uses the pre-trained Doc2Vec model from this parameter. If this parameter is defined, tagged_documents parameter has to be None. In order to get optimal Lbl2Vec results the given Doc2Vec model should be trained with the parameters "dbow_words=1" and "dm=0".

Predict label similarities for documents used for training

Computes the similarity scores for each document vector stored in the model to each of the label vectors.

# get similarity scores from trained model
model.predict_model_docs()

Important parameters:

  • doc_keys: list of document keys (optional). If None: return the similarity scores for all documents that are used to train the Lbl2Vec model. Else: only return the similarity scores of training documents with the given keys.

Predict label similarities for new documents that are not used for training

Computes the similarity scores for each given and previously unknown document vector to each of the label vectors from the model.

# get similarity scores for each new document from trained model
model.predict_new_docs(tagged_docs=tagged_docs)

Important parameters:

Save model to disk

model.save('model_name')

Load model from disk

model = Lbl2Vec.load('model_name')

Citing Lbl2Vec

When citing Lbl2Vec in academic papers and theses, please use this BibTeX entry:

@conference{webist21,
author={Tim Schopf. and Daniel Braun. and Florian Matthes.},
title={Lbl2Vec: An Embedding-based Approach for Unsupervised Document Retrieval on Predefined Topics},
booktitle={Proceedings of the 17th International Conference on Web Information Systems and Technologies - WEBIST,},
year={2021},
pages={124-132},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010710300003058},
isbn={978-989-758-536-4},
issn={2184-3252},
}
You might also like...
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Comments
  • ValueError: cannot compute similarity with no input

    ValueError: cannot compute similarity with no input

    Hi Team,

    I am getting following error while running model fit:

    2022-04-08 14:19:04,344 - Lbl2Vec - INFO - Train document and word embeddings 2022-04-08 14:19:09,992 - Lbl2Vec - INFO - Train label embeddings

    ValueError Traceback (most recent call last) in

    ~/SageMaker/lbl2vec/lbl2vec.py in fit(self) 248 # get doc keys and similarity scores of documents that are similar to 249 # the description keywords --> 250 self.labels[['doc_keys', 'doc_similarity_scores']] = self.labels['description_keywords'].apply(lambda row: self._get_similar_documents( 251 self.doc2vec_model, row, num_docs=self.num_docs, similarity_threshold=self.similarity_threshold, min_num_docs=self.min_num_docs)) 252

    ~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in apply(self, func, convert_dtype, args, **kwds) 4211 else: 4212 values = self.astype(object)._values -> 4213 mapped = lib.map_infer(values, f, convert=convert_dtype) 4214 4215 if len(mapped) and isinstance(mapped[0], Series):

    pandas/_libs/lib.pyx in pandas._libs.lib.map_infer()

    ~/SageMaker/lbl2vec/lbl2vec.py in (row) 249 # the description keywords 250 self.labels[['doc_keys', 'doc_similarity_scores']] = self.labels['description_keywords'].apply(lambda row: self._get_similar_documents( --> 251 self.doc2vec_model, row, num_docs=self.num_docs, similarity_threshold=self.similarity_threshold, min_num_docs=self.min_num_docs)) 252 253 # validate that documents to calculate label embeddings from are found

    ~/SageMaker/lbl2vec/lbl2vec.py in _get_similar_documents(self, doc2vec_model, keywords, num_docs, similarity_threshold, min_num_docs) 625 for word in cleaned_keywords_list] 626 similar_docs = doc2vec_model.dv.most_similar( --> 627 positive=keywordword_vectors, topn=num_docs) 628 except KeyError as error: 629 error.args = (

    ~/anaconda3/envs/python3/lib/python3.6/site-packages/gensim/models/keyedvectors.py in most_similar(self, positive, negative, topn, clip_start, clip_end, restrict_vocab, indexer) 775 all_keys.add(self.get_index(key)) 776 if not mean: --> 777 raise ValueError("cannot compute similarity with no input") 778 mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) 779

    ValueError: cannot compute similarity with no input

    help wanted 
    opened by TechyNilesh 3
  • pip install doesnt work

    pip install doesnt work

    Hello I'm trying to install the package but I get an error.

    pip install lbl2vec

    Collecting lbl2vec ERROR: Could not find a version that satisfies the requirement lbl2vec (from versions: none) ERROR: No matching distribution found for lbl2vec

    I searched a bit on google and couldn't find a solution.

    Python 3.7.4 pip 19.2.3

    help wanted 
    opened by veiro 2
  • Is paragraph classification possible?

    Is paragraph classification possible?

    Hello and thanks for sharing this. A question: can Lbl2Vec perform well when the "documents" are paragraph-sized? For example 3-5 sentences? Would we need to change Doc2Vec that Lbl2Vec currently uses into Sent2Vec or some other equivalent? Your thoughts?

    Thanks!

    opened by stelmath 0
Releases(v1.0.2)
Owner
sebis - TUM - Germany
Official account of sebis chair
sebis - TUM - Germany
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022