[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

Related tags

Deep LearningCONQUER
Overview

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival

PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival.

Task Definition

Given a natural language query, e.g., Addison is having a conversation with Bailey while checking on her baby, the problem of Video Corpus Moment Retrieval, is to locate a precise moment in a video retrieved from a large video corpus. And we are especially interested in the more pragmatic scenario, videos are additionally associated with the text descriptions such as subtitles or ASR (automatic speech transcript).

task_definition

Model Overiew

CONQUER:

  • Query-dependent Fusion (QDF)
  • Query-aware Feature Learning (QAL)
  • Moment localization (ML) head and optional video scoring (VS) head

model_overview

Getting started

Prerequisites

1 . Clone this repository

git clone https://github.com/houzhijian/CONQUER.git
cd CONQUER

2 . Prepare feature files and data

Download tvr_feature_release.tar.gz (21GB). After downloading the feature file, extract it to YOUR DATA STORAGE directory:

tar zxvf path/to/tvr_feature_release.tar.gz 

You should be able to see tvr_feature_release under YOUR DATA STORAGE directory.

It contains visual features (ResNet, SlowFast) obtained from HERO authors and text features (subtitle and query, from fine-tuned RoBERTa) obtained from XML authors. You can refer to the code to learn details on how the features are extracted: visual feature extraction, text feature extraction.

Then modify root_path inside config/tvr_data_config.json to your own root path for data storage.

3 . Install dependencies.

  • Python
  • PyTorch
  • Cuda
  • tensorboard
  • tqdm
  • lmdb
  • easydict
  • msgpack
  • msgpack_numpy

To install the dependencies use conda and pip, you need to have anaconda3 or miniconda3 installed first, then:

conda create --name conquer
conda activate conquer 
conda install python==3.7.9 numpy==1.19.2 pytorch==1.6.0 cudatoolkit=10.1 -c pytorch
conda install tensorboard==2.4.0 tqdm
pip install easydict lmdb msgpack msgpack_numpy

Training and Inference

NOTE: Currently only support train and inference using one gpu.

We give examples on how to perform training and inference for our CONQUER model.

1 . CONQUER training

bash scripts/TRAIN_SCRIPTS.sh EXP_ID CUDA_DEVICE_ID

TRAIN_SCRIPTS is a name string for training script. EXP_ID is a name string for current run. CUDA_DEVICE_ID is cuda device id.

Below are four examples of training CONQUER when

  • it adopts general similarity measure function without shared normalization training objective :
bash scripts/train_general.sh general 0 
  • it adopts general similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_general.sh general_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16
  • it adopts disjoint similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_disjoint.sh disjoint_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16
  • it adopts exclusive similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_exclusive_pretrain.sh exclusive_pretrain_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16 --encoder_pretrain_ckpt_filepath YOUR_DATA_STORAGE_PATH/first_stage_trained_model/model.ckpt

NOTE: The training has randomness when we adopt shared normalization training objective, because we randomly sample negative videos via an adpative pool size. You will witness performance difference each time.

2 . CONQUER inference

After training, you can inference using the saved model on val or test_public set:

bash scripts/inference.sh MODEL_DIR_NAME CUDA_DEVICE_ID

MODEL_DIR_NAME is the name of the dir containing the saved model, e.g., tvr-general_extend1000_neg3-*. CUDA_DEVICE_ID is cuda device id.

By default, this code evaluates all the 3 tasks (VCMR, SVMR, VR), you can change this behavior by appending option, e.g. --tasks VCMR VR where only VCMR and VR are evaluated.

Below is one example of inference CONQUER which produce the best performance shown in paper.

2.1. Download the trained model tvr-conquer_general_paper_performance.tar.gz (173 MB). After downloading the trained model, extract it to the current directory:

tar zxvf tvr-conquer_general_paper_performance.tar.gz

You should be able to see results/tvr-conquer_general_paper_performance under the current directory.

2.2. Perform inference on validation split

bash scripts/inference.sh tvr-conquer_general_paper_performance 0 --nms_thd 0.7

We use non-maximum suppression (NMS) and set the threshold as 0.7, because NMS can contribute to a higher [email protected] and [email protected] score empirically.

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{hou2020conquer,
  title={CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval},
  author={Zhijian, Hou and  Chong-Wah, Ngo and Wing-Kwong Chan},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}

Acknowledgement

This code borrowed components from the following projects: TVRetrieval, HERO, HuggingFace, MMT, MME. We thank the authors for open-sourcing these great projects!

Contact

zjhou3-c [at] my.cityu.edu.hk

Owner
Hou zhijian
A PH.D student
Hou zhijian
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022