High accurate tool for automatic faces detection with landmarks

Overview

faces_detanator

Python

High accurate tool for automatic faces detection with landmarks.

The library is based on public detectors with high accuracy (TinaFace, Retinaface, SCRFD, ...) which are combined together to form an ansamle. All models predict detections, then voting algorithm performs aggregation.

screen shot 2017-08-07 at 12 18 15 pm screen shot 2017-08-07 at 12 18 15 pm screen shot 2017-08-07 at 12 18 15 pm

🛠️ Prerequisites

  1. Install Docker
  2. Install Nvidia Docker Container Runtime
  3. Install nvidia-container-runtime: apt-get install nvidia-container-runtime
  4. Set "default-runtime" : "nvidia" in /etc/docker/daemon.json:
    {
        "default-runtime": "nvidia",
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    }
  5. Restart Docker: systemctl restart docker
  6. Install git-lfs to pull artifacts: git lfs install

🚀   Quickstart

docker can require sudo permission and it is used in run.py script. So in this case run run.py script with sudo permission or add your user to docker group.

# clone project
https://github.com/IgorHoholko/faces_detanator

# [OPTIONAL] create virtual enviroment
virtualenv venv --python=python3.7
source venv/bin/activate

# install requirements
pip install -r requirements.txt

💥 Annotate your images

To start annotating, run the command:

python run.py -i <path_to_your_images>

For more information run:

python run.py -h

😱 More functions?

You can visualize your results:

python -m helpers.draw_output -i <your_meta> -h

You can filter your metadata by threshold after it is formed. Just run:

python -m helpers.filter_output_by_conf -i <your_meta> -t <thres> -h

👀 Adding new detectors for ansamble

To add new detector to ansamble you need to perform the next steps:

Take a look at existing detectors to make process easier.

  1. Create a folder for your detector <detector> in detectors/ folder.
  2. Prepare inference script for your detector. First, define "-i", "--input" argparse parameter which is responsible for input. The script to process the input:
if args.input.split('.')[-1] in ('jpg', 'png'):
    img_paths = [args.input]
else:
    img_paths = glob.glob(f"{args.input}/**/*.jpg", recursive=True)
    img_paths.extend(  glob.glob(f"{args.input}/**/*.png", recursive=True) )
  1. Next create "-o", "--output" argparse parameter. The place where annotation will be saved
  2. Now you need to save your annotations in required format. The script to save annotations looks like this:
data = []
for ipath, (bboxes, kpss) in output.items():
    line = [ipath, str(len(bboxes)), '$d']
    for i in range(len(bboxes)):
        conf = bboxes[i][-1]
        bbox = bboxes[i][:-1]
        bbox = list(map(int, bbox))
        bbox = list(map(str, bbox))

        landmarks = np.array(kpss[i]).astype(int).flatten()
        landmarks = list(map(str, landmarks))
        line.append(str(conf))
        line.extend(bbox)
        line.extend(landmarks)

    data.append(' '.join(line))

with open(os.path.join(args.output, 'meta.txt'), 'w') as f:
    f.write('\n'.join(data))

If your detector doesn't provide landmarks - set landmarks to be array with all -1

  1. When inference script is ready, create entrypoint.sh in the root of <detector> folder. entrypoint.sh describes the logic how to infer your detector. It can look like this:
#!/bin/bash
source venv/bin/activate
python3 tools/scrfd.py -s outputs/ "$@"

IMPORTANT set -s here to outputs.

  1. Now create Dockerfile for your detector with defined earlier entrypoint.
  2. Add your detector to settings.yaml by the sample.
  3. Done!
You might also like...
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

Releases(0.1.0)
Owner
Ihar
Ihar
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022