This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Overview

Equivariant Neural Rendering

This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Colburn, A. Sankar, C. Guestrin, J. Susskind, Q. Shan, ICML 2020.

Pre-trained models

The weights for the trained chairs model are provided in trained-models/chairs.pt.

The other pre-trained models are located https://icml20-prod.cdn-apple.com/eqn-data/models/pre-trained_models.zip. They should be downloaded and placed into the trained-models directory. A small model chairs.pt is included in the git repo.

Examples

Requirements

The requirements can be directly installed from PyPi with pip install -r requirements.txt. Running the code requires python3.6 or higher.

Datasets

each zip file will expand into 3 separate components and a readme e.g:

  • cars-train.zip
  • cars-val.zip
  • cars-test.zip
  • readme.txt containing the license terms.

A few example images are provided in imgs/example-data/.

The chairs and car datasets were created with the help of Vincent Sitzmann.

Satellite imagery © 2020 Maxar Technologies.

We thank Bernhard Vogl ([email protected]) for the lightmaps. The MugsHQ were rendered utilizing an environmental map located at http://dativ.at/lightprobes.

Usage

Training a model

To train a model, run the following:

python experiments.py config.json

This supports both single and multi-GPU training (see config.json for detailed training options). Note that you need to download the datasets before running this command.

Quantitative evaluation

To evaluate a model, run the following:

python evaluate_psnr.py 
    
    

    
   

This will measure the performance (in PSNR) of a trained model on a test dataset.

Model exploration and visualization

The jupyter notebook exploration.ipynb shows how to use a trained model to infer a scene representation from a single image and how to use this representation to render novel views.

Coordinate system

The diagram below details the coordinate system we use for the voxel grid. Due to the manner in which images are stored in arrays and the way PyTorch's affine_grid and grid_sample functions work, this is a slightly unusual coordinate system. Note that theta and phi correspond to elevation and azimuth rotations of the camera around the scene representation. Note also that these are left handed rotations. Full details of the voxel rotation function can be found in transforms3d/rotations.py.

Citing

If you find this code useful in your research, consider citing with

@article{dupont2020equivariant,
  title={Equivariant Neural Rendering},
  author={Dupont, Emilien and Miguel Angel, Bautista and Colburn, Alex and Sankar, Aditya and Guestrin, Carlos and Susskind, Josh and Shan, Qi},
  journal={arXiv preprint arXiv:2006.07630},
  year={2020}
}

License

This project is licensed under the Apple Sample Code License

Owner
Apple
Apple
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Xi Dongbo 78 Nov 29, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022