This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Overview

Equivariant Neural Rendering

This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Colburn, A. Sankar, C. Guestrin, J. Susskind, Q. Shan, ICML 2020.

Pre-trained models

The weights for the trained chairs model are provided in trained-models/chairs.pt.

The other pre-trained models are located https://icml20-prod.cdn-apple.com/eqn-data/models/pre-trained_models.zip. They should be downloaded and placed into the trained-models directory. A small model chairs.pt is included in the git repo.

Examples

Requirements

The requirements can be directly installed from PyPi with pip install -r requirements.txt. Running the code requires python3.6 or higher.

Datasets

each zip file will expand into 3 separate components and a readme e.g:

  • cars-train.zip
  • cars-val.zip
  • cars-test.zip
  • readme.txt containing the license terms.

A few example images are provided in imgs/example-data/.

The chairs and car datasets were created with the help of Vincent Sitzmann.

Satellite imagery © 2020 Maxar Technologies.

We thank Bernhard Vogl ([email protected]) for the lightmaps. The MugsHQ were rendered utilizing an environmental map located at http://dativ.at/lightprobes.

Usage

Training a model

To train a model, run the following:

python experiments.py config.json

This supports both single and multi-GPU training (see config.json for detailed training options). Note that you need to download the datasets before running this command.

Quantitative evaluation

To evaluate a model, run the following:

python evaluate_psnr.py 
    
    

    
   

This will measure the performance (in PSNR) of a trained model on a test dataset.

Model exploration and visualization

The jupyter notebook exploration.ipynb shows how to use a trained model to infer a scene representation from a single image and how to use this representation to render novel views.

Coordinate system

The diagram below details the coordinate system we use for the voxel grid. Due to the manner in which images are stored in arrays and the way PyTorch's affine_grid and grid_sample functions work, this is a slightly unusual coordinate system. Note that theta and phi correspond to elevation and azimuth rotations of the camera around the scene representation. Note also that these are left handed rotations. Full details of the voxel rotation function can be found in transforms3d/rotations.py.

Citing

If you find this code useful in your research, consider citing with

@article{dupont2020equivariant,
  title={Equivariant Neural Rendering},
  author={Dupont, Emilien and Miguel Angel, Bautista and Colburn, Alex and Sankar, Aditya and Guestrin, Carlos and Susskind, Josh and Shan, Qi},
  journal={arXiv preprint arXiv:2006.07630},
  year={2020}
}

License

This project is licensed under the Apple Sample Code License

Owner
Apple
Apple
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022