Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Overview

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Download links and PyTorch implementation of "Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision", ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Xiaoshi Wu, Hadar Averbuch-Elor, Jin Sun, Noah Snavely ICCV 2021

Project Page | Paper

drawing

The WikiScenes Dataset

  1. Image and Textual Descriptions: WikiScenes contains 63K images with captions of 99 cathedrals. We provide two versions for download:

    • Low-res version used in our experiments (maximum width set to 200[px], aspect ratio fixed): (1.9GB .zip file)
    • Higher-res version (maximum longer dimension set to 1200[px], aspect ratio fixed): (19.4GB .zip file)

    Licenses for the images are provided here: (LicenseInfo.json file)

    Data Structure

    WikiScenes is organized recursively, following the tree structure in Wikimedia. Each semantic category (e.g. cathedral) contains the following recursive structure:

    ----0 (e.g., "milano cathedral duomo milan milano italy italia")
    --------0 (e.g., "Exterior of the Duomo (Milan)")
    ----------------0 (e.g., "Duomo (Milan) in art - exterior")
    ----------------1
    ----------------...
    ----------------K0-0
    ----------------category.json
    ----------------pictures (contains all pictures in current hierarchy level)
    --------1
    --------...
    --------K0
    --------category.json
    --------pictures (contains all pictures in current hierarchy level)
    ----1
    ----2
    ----...
    ----N
    ----category.json
    

    category.json is a dictionary of the following format:

    {
        "max_index": SUB-DIR-NUMBER
        "pairs" :    {
                        CATEGORY-NAME: SUB-DIR-NAME
                    }
        "pictures" : {
                        PICTURE-NAME: {
                                            "caption": CAPTION-DATA,
                                            "url": URL-DATA,
                                            "properties": PROPERTIES
                                    }
                    }
    }
    

    where:

    1. SUB-DIR-NUMBER is the total number of subcategories
    2. CATEGORY-NAME is the name of the category (e.g., "milano cathedral duomo milan milano italy italia")
    3. SUB-DIR-NAME is the name of the sub-folder (e.g., "0")
    4. PICTURE-NAME is the name of the jpg file located within the pictures folder
    5. CAPTION-DATA contains the caption and URL contains the url from which the image was scraped.
    6. PROPERTIES is a list of properties pre-computed for the image-caption pair (e.g. estimated language of caption).
  2. Keypoint correspondences: We also provide keypoint correspondences between pixels of images from the same landmark: (982MB .zip file)

    Data Structure

     {
         "image_id" : {
                         "kp_id": (x, y),
                     }
     }
    

    where:

    1. image_id is the id of each image.
    2. kp_id is the id of keypoints, which is unique across the whole dataset.
    3. (x, y) the location of the keypoint in this image.
  3. COLMAP reconstructions: We provide the full 3D models used for computing keypoint correspondences: (1GB .zip file)

    To view these models, download and install COLMAP. The reconstructions are organized by landmarks. Each landmark folder contains all the reconstructions associated with that landmark. Each reconstruction contains 3 files:

    1. points3d.txt that contains one line of data for each 3D point associated with the reconstruction. The format for each point is: POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX).
    2. images.txt that contains two lines of data for each image associated with the reconstruction. The format of the first line is: IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME. The format of the second line is: POINTS2D[] as (X, Y, POINT3D_ID)
    3. cameras.txt that contains one line of data for each camera associated with the reconstruction according to the following format: CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]

    Please refer to COLMAP's tutorial for further instructions on how to view these reconstructions.

  4. Companion datasets for additional landmark categories: We provide download links for additional category types:

    Synagogues

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

    Mosques

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

Reproducing Results

  1. Minimum requirements. This project was originally developed with Python 3.6, PyTorch 1.0 and CUDA 9.0. The training requires at least one Titan X GPU (12Gb memory) .

  2. Setup your Python environment. Clone the repository and install the dependencies:

    conda create -n <environment_name> --file requirements.txt -c conda-forge/label/cf202003
    conda activate <environment_name>
    conda install scikit-learn=0.21
    pip install opencv-python
    
  3. Download the dataset. Download the data as detailed above, unzip and place as follows: Image and textual descriptions in <project>/data/ and the correspondence file in <project>.

  4. Download pre-trained models. Download the initial weights (pre-trained on ImageNet) for the backbone model and place in <project>/models/weights/.

    Backbone Initial Weights Comments
    ResNet50 resnet50-19c8e357.pth PyTorch official model
  5. Train on the WikiScenes dataset. See instructions below. Note that the first run always takes longer for pre-processing. Some computations are cached afterwards.

Training, Inference and Evaluation

The directory launch contains template bash scripts for training, inference and evaluation.

Training. For each run, you need to specify the names of two variables, bash EXP and bash RUN_ID. Running bash EXP=wiki RUN_ID=v01 ./launch/run_wikiscenes_resnet50.sh will create a directory ./logs/wikiscenes_corr/wiki/ with tensorboard events and saved snapshots in ./snapshots/wikiscenes_corr/wiki/v01.

Inference.

If you want to do inference with our pre-trained model, please make a directory and put the model there.

    mkdir -p ./snapshots/wikiscenes_corr/final/ours

Download our validation set, and unzip it.

    unzip val_seg.zip

run sh ./launch/infer_val_wikiscenes.sh to predict masks. You can find the predicted masks in ./logs/masks.

If you want to evaluate you own models, you will also need to specify:

  • EXP and RUN_ID you used for training;
  • OUTPUT_DIR the path where to save the masks;
  • SNAPSHOT specifies the model suffix in the format e000Xs0.000;

Evaluation. To compute IoU of the masks, run sh ./launch/eval_seg.sh.

Pre-trained model

For testing, we provide our pre-trained ResNet50 model:

Backbone Link
ResNet50 model_enc_e024Xs-0.800.pth (157M)

Datasheet

We provide a datasheet for our dataset here.

License

The images in our dataset are provided by Wikimedia Commons under various free licenses. These licenses permit the use, study, derivation, and redistribution of these images—sometimes with restrictions, e.g. requiring attribution and with copyleft. We provide full license text and attribution for all images, make no modifications to any, and release these images under their original licenses. The associated captions are provided as a part of unstructured text in Wikimedia Commons, with rights to the original writers under the CC BY-SA 3.0 license. We modify these (as specified in our paper) and release such derivatives under the same license. We provide the rest of our dataset under a CC BY-NC-SA 4.0 license.

Citation

@inproceedings{Wu2021Towers,
 title={Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision},
 author={Wu, Xiaoshi and Averbuch-Elor, Hadar and Sun, Jin and Snavely, Noah},
 booktitle={ICCV},
 year={2021}
}

Acknowledgement

Our code is based on the implementation of Single-Stage Semantic Segmentation from Image Labels

Owner
Blakey Wu
Blakey Wu
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022