Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Overview

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Download links and PyTorch implementation of "Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision", ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Xiaoshi Wu, Hadar Averbuch-Elor, Jin Sun, Noah Snavely ICCV 2021

Project Page | Paper

drawing

The WikiScenes Dataset

  1. Image and Textual Descriptions: WikiScenes contains 63K images with captions of 99 cathedrals. We provide two versions for download:

    • Low-res version used in our experiments (maximum width set to 200[px], aspect ratio fixed): (1.9GB .zip file)
    • Higher-res version (maximum longer dimension set to 1200[px], aspect ratio fixed): (19.4GB .zip file)

    Licenses for the images are provided here: (LicenseInfo.json file)

    Data Structure

    WikiScenes is organized recursively, following the tree structure in Wikimedia. Each semantic category (e.g. cathedral) contains the following recursive structure:

    ----0 (e.g., "milano cathedral duomo milan milano italy italia")
    --------0 (e.g., "Exterior of the Duomo (Milan)")
    ----------------0 (e.g., "Duomo (Milan) in art - exterior")
    ----------------1
    ----------------...
    ----------------K0-0
    ----------------category.json
    ----------------pictures (contains all pictures in current hierarchy level)
    --------1
    --------...
    --------K0
    --------category.json
    --------pictures (contains all pictures in current hierarchy level)
    ----1
    ----2
    ----...
    ----N
    ----category.json
    

    category.json is a dictionary of the following format:

    {
        "max_index": SUB-DIR-NUMBER
        "pairs" :    {
                        CATEGORY-NAME: SUB-DIR-NAME
                    }
        "pictures" : {
                        PICTURE-NAME: {
                                            "caption": CAPTION-DATA,
                                            "url": URL-DATA,
                                            "properties": PROPERTIES
                                    }
                    }
    }
    

    where:

    1. SUB-DIR-NUMBER is the total number of subcategories
    2. CATEGORY-NAME is the name of the category (e.g., "milano cathedral duomo milan milano italy italia")
    3. SUB-DIR-NAME is the name of the sub-folder (e.g., "0")
    4. PICTURE-NAME is the name of the jpg file located within the pictures folder
    5. CAPTION-DATA contains the caption and URL contains the url from which the image was scraped.
    6. PROPERTIES is a list of properties pre-computed for the image-caption pair (e.g. estimated language of caption).
  2. Keypoint correspondences: We also provide keypoint correspondences between pixels of images from the same landmark: (982MB .zip file)

    Data Structure

     {
         "image_id" : {
                         "kp_id": (x, y),
                     }
     }
    

    where:

    1. image_id is the id of each image.
    2. kp_id is the id of keypoints, which is unique across the whole dataset.
    3. (x, y) the location of the keypoint in this image.
  3. COLMAP reconstructions: We provide the full 3D models used for computing keypoint correspondences: (1GB .zip file)

    To view these models, download and install COLMAP. The reconstructions are organized by landmarks. Each landmark folder contains all the reconstructions associated with that landmark. Each reconstruction contains 3 files:

    1. points3d.txt that contains one line of data for each 3D point associated with the reconstruction. The format for each point is: POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX).
    2. images.txt that contains two lines of data for each image associated with the reconstruction. The format of the first line is: IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME. The format of the second line is: POINTS2D[] as (X, Y, POINT3D_ID)
    3. cameras.txt that contains one line of data for each camera associated with the reconstruction according to the following format: CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]

    Please refer to COLMAP's tutorial for further instructions on how to view these reconstructions.

  4. Companion datasets for additional landmark categories: We provide download links for additional category types:

    Synagogues

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

    Mosques

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

Reproducing Results

  1. Minimum requirements. This project was originally developed with Python 3.6, PyTorch 1.0 and CUDA 9.0. The training requires at least one Titan X GPU (12Gb memory) .

  2. Setup your Python environment. Clone the repository and install the dependencies:

    conda create -n <environment_name> --file requirements.txt -c conda-forge/label/cf202003
    conda activate <environment_name>
    conda install scikit-learn=0.21
    pip install opencv-python
    
  3. Download the dataset. Download the data as detailed above, unzip and place as follows: Image and textual descriptions in <project>/data/ and the correspondence file in <project>.

  4. Download pre-trained models. Download the initial weights (pre-trained on ImageNet) for the backbone model and place in <project>/models/weights/.

    Backbone Initial Weights Comments
    ResNet50 resnet50-19c8e357.pth PyTorch official model
  5. Train on the WikiScenes dataset. See instructions below. Note that the first run always takes longer for pre-processing. Some computations are cached afterwards.

Training, Inference and Evaluation

The directory launch contains template bash scripts for training, inference and evaluation.

Training. For each run, you need to specify the names of two variables, bash EXP and bash RUN_ID. Running bash EXP=wiki RUN_ID=v01 ./launch/run_wikiscenes_resnet50.sh will create a directory ./logs/wikiscenes_corr/wiki/ with tensorboard events and saved snapshots in ./snapshots/wikiscenes_corr/wiki/v01.

Inference.

If you want to do inference with our pre-trained model, please make a directory and put the model there.

    mkdir -p ./snapshots/wikiscenes_corr/final/ours

Download our validation set, and unzip it.

    unzip val_seg.zip

run sh ./launch/infer_val_wikiscenes.sh to predict masks. You can find the predicted masks in ./logs/masks.

If you want to evaluate you own models, you will also need to specify:

  • EXP and RUN_ID you used for training;
  • OUTPUT_DIR the path where to save the masks;
  • SNAPSHOT specifies the model suffix in the format e000Xs0.000;

Evaluation. To compute IoU of the masks, run sh ./launch/eval_seg.sh.

Pre-trained model

For testing, we provide our pre-trained ResNet50 model:

Backbone Link
ResNet50 model_enc_e024Xs-0.800.pth (157M)

Datasheet

We provide a datasheet for our dataset here.

License

The images in our dataset are provided by Wikimedia Commons under various free licenses. These licenses permit the use, study, derivation, and redistribution of these images—sometimes with restrictions, e.g. requiring attribution and with copyleft. We provide full license text and attribution for all images, make no modifications to any, and release these images under their original licenses. The associated captions are provided as a part of unstructured text in Wikimedia Commons, with rights to the original writers under the CC BY-SA 3.0 license. We modify these (as specified in our paper) and release such derivatives under the same license. We provide the rest of our dataset under a CC BY-NC-SA 4.0 license.

Citation

@inproceedings{Wu2021Towers,
 title={Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision},
 author={Wu, Xiaoshi and Averbuch-Elor, Hadar and Sun, Jin and Snavely, Noah},
 booktitle={ICCV},
 year={2021}
}

Acknowledgement

Our code is based on the implementation of Single-Stage Semantic Segmentation from Image Labels

Owner
Blakey Wu
Blakey Wu
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022