Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Overview

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

This project acts as both a tutorial and a demo to using Hyperopt with Keras, TensorFlow and TensorBoard. Not only we try to find the best hyperparameters for the given hyperspace, but also we represent the neural network architecture as hyperparameters that can be tuned. This automates the process of searching for the best neural architecture configuration and hyperparameters.

Here, we are meta-optimizing a neural net and its architecture on the CIFAR-100 dataset (100 fine labels), a computer vision task. This code could be easily transferred to another vision dataset or even to another machine learning task.

How Hyperopt works

First off, to learn how hyperopt works and what it is for, read the hyperopt tutorial.

Meta-optimize the neural network with Hyperopt

To run the hyperparameter search vy yourself, do: python3 hyperopt_optimize.py. You might want to look at requirements.py and install some of them manually to acquire GPU acceleration (e.g.: installing TensorFlow and Keras especially by yourself).

Optimization results will continuously be saved in the results/ folder (sort files to take best result as human-readable text). Also, the results are pickled to results.pkl to be able to resume the TPE meta-optimization process later simply by running the program again with python3 hyperopt_optimize.py.

If you want to learn more about Hyperopt, you'll probably want to watch that video made by the creator of Hyperopt. Also, if you want to run the model on the CIFAR-10 dataset, you must edit the file neural_net.py.

It is possible that you get better results than there are already here. Pull requests / contributions are welcome. Suggestion: trying many different initializers for the layers would be an interesting thing to try. Adding SELU activations would be interesting too. To restart the training with new or removed hyperparameters, it is recommended to delete existing results with ./delete_results.sh.

The Deep Convolutional Neural Network Model

Here is a basic overview of the model. I implemented it in such a way that Hyperopt will try to change the shape of the layers and remove or replace some of them according to some pre-parametrized ideas that I have got. Therefore, not only the learning rate is changed with hyperopt, but a lot more parameters.

Analysis of the hyperparameters

Here is an analysis of the results regarding the effect of every hyperparameters. Here is an excerpt:

This could help to redefine the hyperparameters and to narrow them down successively, relaunching the meta-optimization on refined spaces.

Best result

The best model is this one: results/model_0.676100010872_6066e.txt.json.

The final accuracy is of 67.61% in average on the 100 fine labels, and is of 77.31% in average on the 20 coarse labels. My results are comparable to the ones in the middle of that list, under the CIFAR-100 section. The only image preprocessing that I do is a random flip left-right.

Best hyperspace found:

space_best_model = {
    "coarse_best_accuracy": 0.7731000242233277,
    "coarse_best_loss": 0.8012041954994201,
    "coarse_end_accuracy": 0.7565,
    "coarse_end_loss": 0.9019438380718231,
    "fine_best_accuracy": 0.6761000108718872,
    "fine_best_loss": 1.3936876878738402,
    "fine_end_accuracy": 0.6549,
    "fine_end_loss": 1.539645684337616,
    "history": {...},
    "loss": -0.6761000108718872,
    "model_name": "model_0.676100010872_6066e",
    "real_loss": 3.018656848526001,
    "space": {
        "activation": "elu",
        "batch_size": 320.0,
        "coarse_labels_weight": 0.3067103474295116,
        "conv_dropout_drop_proba": 0.25923531175521264,
        "conv_hiddn_units_mult": 1.5958302613876916,
        "conv_kernel_size": 3.0,
        "conv_pool_res_start_idx": 0.0,
        "fc_dropout_drop_proba": 0.4322253354921089,
        "fc_units_1_mult": 1.3083964454436132,
        "first_conv": 3,
        "l2_weight_reg_mult": 0.41206755600055983,
        "lr_rate_mult": 0.6549347353077412,
        "nb_conv_pool_layers": 3,
        "one_more_fc": null,
        "optimizer": "Nadam",
        "pooling_type": "avg",
        "res_conv_kernel_size": 2.0,
        "residual": 3.0,
        "use_BN": true
    },
    "status": "ok"
}

Plotting this best hyperspace's model:

TensorBoard

TensorBoard can be used to inspect the best result (or all results in case you retrain and edit the code to enable TensorBoard on everything.)

It is possible to run python3 retrain_best_with_tensorboard.py to retrain the model and save TensorBoard logs, as well as saving the weights at their best state during training for a potential reuse. The instructions to run TensorBoard will be printed in the console at the end of the retraining.

Every training's TensorBoard log will be in a new folder under the "TensorBoard/" directory with an unique name (the model ID).

Here is the command to run TensorBoard once located in the root directory of the project:

tensorboard --logdir=TensorBoard/

Logs for the best model can be downloaded manually (approximately 7 GB). Refer to the text file under the folder TensorBoard for directions on how to download the logs from Google Drive before running the TensorBoard client with the tensorboard --logdir=TensorBoard/ command.

Just as an example, here is what can be seen in TensorBoard for the histograms related to the first convolutional layer, conv2d_1:

It suggests that better weights and biases initialization schemes could be used.

It is also possible to see in TensorBoard more statistics and things, such as the distribution tab, the graphs tab, and the the scalars tab. See printscreens of all the statistics available under the TensorBoard/previews/ folder of this project.

Visualizing what activates certain filters

We use the method of gradient ascent in the input space. This consists of generating images that activate certain filters in layers. This consists of using a loss on the filters' activation to then derive and apply gradients in the input space to gradually form input images that activate the given filters maximally. This is done for each filter separately.

To run the visualization, one must edit conv_filters_visualization.py to make it load the good weights (in case a retraining was done) and then run python3 conv_filters_visualization.py. The images for layers will be seen under the folder layers/ of this project.

Here is an example for a low level layer, the one named add_1:

License

The MIT License (MIT)

Copyright (c) 2017 Vooban Inc.

For more information on sublicensing and the use of other parts of open-source code, see: https://github.com/Vooban/Hyperopt-Keras-CNN-CIFAR-100/blob/master/LICENSE

Owner
Guillaume Chevalier
e^(πi) + 1 = 0
Guillaume Chevalier
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023