Qlib is an AI-oriented quantitative investment platform

Overview

Python Versions Platform PypI Versions Upload Python Package Github Actions Test Status Documentation Status License Join the chat at https://gitter.im/Microsoft/qlib

๐Ÿ“ฐ What's NEW!   ๐Ÿ’–

Recent released features

Feature Status
ADD model Released on Nov 22, 2021
ADARNN model Released on Nov 14, 2021
TCN model Released on Nov 4, 2021
Temporal Routing Adaptor (TRA) Released on July 30, 2021
Transformer & Localformer Released on July 22, 2021
Release Qlib v0.7.0 Released on July 12, 2021
TCTS Model Released on July 1, 2021
Online serving and automatic model rolling โญ Released on May 17, 2021
DoubleEnsemble Model Released on Mar 2, 2021
High-frequency data processing example Released on Feb 5, 2021
High-frequency trading example Part of code released on Jan 28, 2021
High-frequency data(1min) Released on Jan 27, 2021
Tabnet Model Released on Jan 22, 2021

Features released before 2021 are not listed here.

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

It contains the full ML pipeline of data processing, model training, back-testing; and covers the entire chain of quantitative investment: alpha seeking, risk modeling, portfolio optimization, and order execution.

With Qlib, users can easily try ideas to create better Quant investment strategies.

For more details, please refer to our paper "Qlib: An AI-oriented Quantitative Investment Platform".

Plans

New features under development(order by estimated release time). Your feedbacks about the features are very important.

Feature Status
Planning-based portfolio optimization Under review: https://github.com/microsoft/qlib/pull/280
Fund data supporting and analysis Under review: https://github.com/microsoft/qlib/pull/292
Point-in-Time database Under review: https://github.com/microsoft/qlib/pull/343
High-frequency trading Under review: https://github.com/microsoft/qlib/pull/408
Meta-Learning-based data selection Initial opensource version under development

Framework of Qlib

At the module level, Qlib is a platform that consists of the above components. The components are designed as loose-coupled modules, and each component could be used stand-alone.

Name Description
Infrastructure layer Infrastructure layer provides underlying support for Quant research. DataServer provides a high-performance infrastructure for users to manage and retrieve raw data. Trainer provides a flexible interface to control the training process of models, which enable algorithms to control the training process.
Workflow layer Workflow layer covers the whole workflow of quantitative investment. Information Extractor extracts data for models. Forecast Model focuses on producing all kinds of forecast signals (e.g. alpha, risk) for other modules. With these signals Portfolio Generator will generate the target portfolio and produce orders to be executed by Order Executor.
Interface layer Interface layer tries to present a user-friendly interface for the underlying system. Analyser module will provide users detailed analysis reports of forecasting signals, portfolios and execution results
  • The modules with hand-drawn style are under development and will be released in the future.
  • The modules with dashed borders are highly user-customizable and extendible.

Quick Start

This quick start guide tries to demonstrate

  1. It's very easy to build a complete Quant research workflow and try your ideas with Qlib.
  2. Though with public data and simple models, machine learning technologies work very well in practical Quant investment.

Here is a quick demo shows how to install Qlib, and run LightGBM with qrun. But, please make sure you have already prepared the data following the instruction.

Installation

This table demonstrates the supported Python version of Qlib:

install with pip install from source plot
Python 3.7 โœ”๏ธ โœ”๏ธ โœ”๏ธ
Python 3.8 โœ”๏ธ โœ”๏ธ โœ”๏ธ
Python 3.9 โŒ โœ”๏ธ โŒ

Note:

  1. Conda is suggested for managing your Python environment.
  2. Please pay attention that installing cython in Python 3.6 will raise some error when installing Qlib from source. If users use Python 3.6 on their machines, it is recommended to upgrade Python to version 3.7 or use conda's Python to install Qlib from source.
  3. For Python 3.9, Qlib supports running workflows such as training models, doing backtest and plot most of the related figures (those included in notebook). However, plotting for the model performance is not supported for now and we will fix this when the dependent packages are upgraded in the future.

Install with pip

Users can easily install Qlib by pip according to the following command.

  pip install pyqlib

Note: pip will install the latest stable qlib. However, the main branch of qlib is in active development. If you want to test the latest scripts or functions in the main branch. Please install qlib with the methods below.

Install from source

Also, users can install the latest dev version Qlib by the source code according to the following steps:

  • Before installing Qlib from source, users need to install some dependencies:

    pip install numpy
    pip install --upgrade  cython
  • Clone the repository and install Qlib as follows.

    • If you haven't installed qlib by the command pip install pyqlib before:
      git clone https://github.com/microsoft/qlib.git && cd qlib
      python setup.py install
    • If you have already installed the stable version by the command pip install pyqlib:
      git clone https://github.com/microsoft/qlib.git && cd qlib
      pip install .

    Note: Only the command pip install . can overwrite the stable version installed by pip install pyqlib, while the command python setup.py install can't.

Tips: If you fail to install Qlib or run the examples in your environment, comparing your steps and the CI workflow may help you find the problem.

Data Preparation

Load and prepare data by running the following code:

# get 1d data
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn

# get 1min data
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --region cn --interval 1min

This dataset is created by public data collected by crawler scripts, which have been released in the same repository. Users could create the same dataset with it.

Please pay ATTENTION that the data is collected from Yahoo Finance, and the data might not be perfect. We recommend users to prepare their own data if they have a high-quality dataset. For more information, users can refer to the related document.

Automatic update of daily frequency data (from yahoo finance)

It is recommended that users update the data manually once (--trading_date 2021-05-25) and then set it to update automatically.

For more information refer to: yahoo collector

  • Automatic update of data to the "qlib" directory each trading day(Linux)

    • use crontab: crontab -e

    • set up timed tasks:

      * * * * 1-5 python 
Comments
  • ่ฏท้—ฎๅœจไฝฟ็”จ่‡ชๅทฑ็š„ๆ•ฐๆฎ้›†ๆ—ถๅฆ‚ๆžœ็”Ÿๆˆไพ‹ๅฆ‚csi300.txt็š„instrument

    ่ฏท้—ฎๅœจไฝฟ็”จ่‡ชๅทฑ็š„ๆ•ฐๆฎ้›†ๆ—ถๅฆ‚ๆžœ็”Ÿๆˆไพ‹ๅฆ‚csi300.txt็š„instrument

    โ“ Questions and Help

    We sincerely suggest you to carefully read the documentation of our library as well as the official paper. After that, if you still feel puzzled, please describe the question clearly under this issue.

    ๆ‚จๅฅฝ๏ผๆˆ‘ๅœจๅฐ่ฏ•ๅผ•ๅ…ฅ่‡ชๅทฑ็š„ๆ•ฐๆฎ๏ผŒไฝฟ็”จdump_bin.py็”Ÿๆˆfeatures๏ผŒcalendarsๅ’Œinstruments๏ผŒไฝ†ๆ˜ฏinstrumentsไธญๆฒกๆœ‰csi300ๅ’Œcsi100.ๅœจ่ท‘็š„ๆ—ถๅ€™ไผšๆŠฅ้”™csi300.txtไธๅญ˜ๅœจ๏ผŒ่ฏท้—ฎ่ฟ™ไธชinstrumentsไธญ็š„csi300ๅฆ‚ไฝ•็”Ÿๆˆ๏ผŒ่ฐข่ฐข๏ผ

    question stale 
    opened by TompaBay 20
  • Error when running LightGBM_Alpha158 model with minimal custom data

    Error when running LightGBM_Alpha158 model with minimal custom data

    ๐Ÿ› Bug Description

    I try to import my own mini csv data (2 symbol and sh000300 index), and run the same model as demo:

    qrun benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml

    However it gives this error:

    TypeError: Can only swap levels on a hierarchical axis.

    To Reproduce

    Steps to reproduce the behavior:

    1. import 3 data series into own data folder cn_1d through csv import.

    000615 2008-01-02 2021-04-30 603919 2016-03-10 2021-04-30 SH000300 2008-01-02 2021-04-30

    1. Copy csi300.txt to own data folder subfolder cn_1d\instruments
    2. Update workflow_config_lightgbm_Alpha158.yaml to point to own data folder cn_1d
    3. run benchmark:

    qrun benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml

    Expected Behavior

    Similar analysis result as running on demo cn 1d data, with reduced data set.

    Screenshot

    image

    Environment

    Note: User could run cd scripts && python collect_info.py all under project directory to get system information and paste them here directly.

    Windows AMD64 Windows-10-10.0.19041-SP0 10.0.19041

    Python version: 3.8.8 (default, Feb 24 2021, 15:54:32) [MSC v.1928 64 bit (AMD64)]

    Qlib version: 0.6.3.99 numpy==1.20.3 pandas==1.2.4 scipy==1.6.0 requests==2.25.1 sacred==0.8.2 python-socketio==3.1.2 redis==3.5.3 python-redis-lock==3.7.0 schedule==1.0.0 cvxpy==1.0.21 hyperopt==0.1.1 fire==0.4.0 statsmodels==0.12.1 xlrd==2.0.1 plotly==4.12.0 matplotlib==3.1.3 tables==3.6.1 pyyaml==5.4.1 mlflow==1.14.0 tqdm==4.61.0 loguru==0.5.3 lightgbm==3.1.1 tornado==6.1 joblib==1.0.1 fire==0.4.0 ruamel.yaml==0.16.12

    • Commit number (optional, please provide it if you are using the dev version): cbbf6cd82260e533662a7433ba72cf3391347619

    Additional Notes

    bug 
    opened by arisliang 20
  • ๅฆ‚ไฝ•ไฝฟ็”จไฝŽ้ข‘ๆ•ฐๆฎ

    ๅฆ‚ไฝ•ไฝฟ็”จไฝŽ้ข‘ๆ•ฐๆฎ

    โ“ Questions and Help

    ๆˆ‘ๅฐ†ๆ—ฅ้ข‘ๆ•ฐๆฎๅชๅ–ๅถๆ•ฐไบคๆ˜“ๆ—ฅ็š„ๅ€ผ๏ผŒๅŽปๆŽ‰ๅฅ‡ๆ•ฐไบคๆ˜“ๆ—ฅ็š„ๆ•ฐๆฎ๏ผŒ็„ถๅŽdump_allๆˆqlib็ฑปๅž‹็š„ๆ•ฐๆฎ๏ผŒ็„ถๅŽๅฏผๅ…ฅๅˆฐๅฎžไพ‹็จ‹ๅบworkflow_by_code.ipynb้‡Œ่ฟ›่กŒ่ฎญ็ปƒ๏ผŒๅœจtrain model่ฟ‡็จ‹ไธญๅ‡บ็ŽฐๆŠฅ้”™ใ€‚ไฝ†ๆˆ‘็œ‹ๆ‚จไน‹ๅ‰ๅ›ž็ญ”ๆŸไธช้—ฎ้ข˜ไธญ่ฏดโ€œQlib didn't hard code the data frequency.โ€๏ผŒ่ฏท้—ฎไธ€ไธ‹ๅฆ‚ๆžœๆ•ฐๆฎไธๆ˜ฏๆ—ฅ้ข‘็š„๏ผŒๅบ”่ฏฅๅฆ‚ไฝ•ไฝฟ็”จ๏ผˆๅŒ…ๆ‹ฌๅฏผๅ…ฅ๏ผŒ่ฎญ็ปƒ๏ผŒๅ›žๆต‹๏ผ‰๏ผŸ่ฐข่ฐข

    question 
    opened by panshuaiyin 17
  • Would you introduce about library of mlflow?

    Would you introduce about library of mlflow?

    โ“ Questions and Help

    What is the function of this library๏ผŸ#MLFLOW this is just a machinelearning frame๏ผŒwhen i run one of benchmrks ,but it cound't it.

    question stale 
    opened by vinsvison 17
  • confusions about dump_bin.py

    confusions about dump_bin.py

    In https://github.com/microsoft/qlib/blob/main/scripts/dump_bin.py#L352 and https://github.com/microsoft/qlib/blob/main/scripts/dump_bin.py#L315 There are two classes that I don't know how to use, class DumpDataFix(DumpDataAll), and class DumpDataUpdate(DumpDataBase), can anyone explain it for me? I am looking for some ways to update dump data, but did not succeed till now.

    question stale 
    opened by zymmatt 16
  • Add two transformer models via upload

    Add two transformer models via upload

    Add a naive transformer model and an improved transformer model.

    Description

    The tested successful requirement is Python 3.6/3.7/3.8 and Pytorch 1.12/1.2.

    The naive transformer implemented here for financial time series prediction follows the paper "Attention is all you need": Given the input (N, T, F),

    1. An embedding layer that maps the input (N, T, F) to representation (N, T, Fโ€™);
    2. A positional encoding layer that adds the positional sigmoid;
    3. An encoder that consists of several encoding layers, each of which uses a self-attention layer as the computing module (function of query, key, and value).
    4. A decoder that consists of an MLP (or a Linear layer) that maps the representation of the last time (N, 1, F') into output (N, 1).

    The improved transformer is a simple self-designed transformer (based on the paper 'SLGT: Self-adaptive Local-global aware Transformer for Sequential Recommendation', which is submitted to a conference and will be available on ArXiv soon). Localformer imports 1-dimensional convolutional layers besides the encoder layer as a locality inductive bias to supplement the long-term dependent self-attention module, which updates the representation of sequence at each time locally. Specifically, the input representation that passes through each encoder layer (self-attention layer) will be the original input adds (+) the output of the input passing through an extra 1-d convolutional layer. For example, if the encoder originally contains three self-attention layers attn-attn-attn, it will now be conv-attn-conv-attn-conv-attn. After the transformer module, a GRU is added to further aggregate the representation with sequential inductive bias (provided by the RNN layers).

    Motivation and Context

    It adds two famous transformer models for customers to select, besides other base models that Qlib already contains. The model performance reaches a 1.47 information ratio, which is fairly high. The improved version transformer adds convolution and RNN to supplement inductive bias, which is simple but effective.

    How Has This Been Tested?

    • [ ] Pass the test by running: qrun benchmarks/Transformer/workflow_config_localformer_Alpha158.yaml under upper directory of qlib, where 'workflow_config_localformer_Alpha158.yaml' only needs to change this line of code 'task: model: class: LocalformerModel' or 'task: model: class: TransformerModel'.
    • [ ] The performances of the two models are described above.

    Screenshots of Test Results (if appropriate):

    Transformer Results on Alpha158: ''' 'IC': 0.03186587768611013, 'ICIR': 0.2556910881045764, 'Rank IC': 0.04735251936658551, 'Rank ICIR': 0.388378955424602

    'The following are analysis results of the excess return without cost.' risk mean 0.000309 std 0.004209 annualized_return 0.077839 information_ratio 1.164993 max_drawdown -0.106215

    'The following are analysis results of the excess return with cost.' risk mean 0.000126 std 0.004209 annualized_return 0.031707 information_ratio 0.474567 max_drawdown -0.131948

    Transformer Results on Alpha360: {'IC': 0.011659216755690713, 'ICIR': 0.07383408561758713, 'Rank IC': 0.03505118059955821, 'Rank ICIR': 0.2453042675836217} 'The following are analysis results of the excess return without cost.' risk mean 0.000026 std 0.005318 annualized_return 0.006658 information_ratio 0.078865 max_drawdown -0.104203

    Localformer Results on Alpha158: {'IC': 0.037426503365732174, 'ICIR': 0.28977883455541603, 'Rank IC': 0.04659889541774283, 'Rank ICIR': 0.373569340092482}

    'The following are analysis results of the excess return without cost.' risk mean 0.000381 std 0.004109 annualized_return 0.096066 information_ratio 1.472729 max_drawdown -0.094917

    'The following are analysis results of the excess return with cost.' risk mean 0.000213 std 0.004111 annualized_return 0.053630 information_ratio 0.821711 max_drawdown -0.113694

    Localformer Results on Alpha360: {'IC': 0.03766845905185995, 'ICIR': 0.26793394150788935, 'Rank IC': 0.0530091645633088, 'Rank ICIR': 0.40090294387953357} 'The following are analysis results of the excess return without cost.' risk mean 0.000131 std 0.004943 annualized_return 0.033129 information_ratio 0.422228 max_drawdown -0.127502

    Types of changes

    • [ ] Fix bugs
    • [x] Add new feature
    • [ ] Update documentation
    opened by yingtaoluo 15
  • about qlib data

    about qlib data

    If you use the pre-reinstatement price๏ผŒit will imply future information.Howerer,If you use the real price,there will be problems in the calculation of return.Which kind of raw data is used in qilb?

    question stale 
    opened by ZFgan 15
  • Bug fix for Rank and WMA operators

    Bug fix for Rank and WMA operators

    Description

    1. change the scaling in the inner function of Rank operator from len(x1) to 100
    2. add 1 on the non-normalized weights of WMA operators

    Motivation and Context

    For 1): I would guess the goal is to scale the ranking result between 0 and 1. According to the scipy document, percentileofscore

    Compute the percentile rank of a score relative to a list of scores. A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score.

    it doesn't make sense to divide by length to array size, instead, should divide by 100.

    For 2): The common convention of linear weighted MA with window size d should be weighted by d, d-1, ..., 1, instead of d-1, d-2, ..., 0, see e.g. https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/wma and the decay_linear function in famous 101 Formulaic Alphas by Zura Kakushadze from WorldQuant. Though convention problem is arguable I think it's better to be more intuitive.

    How Has This Been Tested?

    • [x] Pass the test by running: pytest qlib/tests/test_all_pipeline.py under upper directory of qlib.
    • [ ] If you are adding a new feature, test on your own test scripts.

    Screenshots of Test Results (if appropriate):

    1. Pipeline test: image

    2. Your own tests:

    Types of changes

    • [x] Fix bugs
    • [ ] Add new feature
    • [ ] Update documentation
    bug 
    opened by qianyun210603 13
  • Label does not match calculation from sorce data

    Label does not match calculation from sorce data

    โ“ Questions and Help

    Tried to understand how Qlib works and hit this issue: I calculated a label by Excel and compared it with the same label dumped from Qlib code, by same stock instrument in same year. They did NOT match, not evel close. I know even the 'source data' from Yahoo Finance was pre-processed by some notmalization but since my lebel involves only the close feature, it is supposed to remain unchanged through the process. See my screenshot below.

    In the left marked in yello is the source data calculation in Excel, data was fetched by D.feature and stored in csv, dumped to .bin then finally feed into 'provider_uri'; in the right marked in blue is the dump from DatasetH.prepare() by Qlib code. Please see both labels have same calculating expression but totally different values.

    image

    So why am I seeing this?

    question stale 
    opened by hensejiang 13
  • Qlib run into error by joblib or multiprocessing

    Qlib run into error by joblib or multiprocessing

    โ“ Questions and Help

    I was trying to develop some alpha following the doc at https://qlib.readthedocs.io/en/latest/advanced/alpha.html The code was pasted from the example as:

    if name == 'main': from qlib.data.dataset.loader import QlibDataLoader#MACD_EXP = '(EMA($close, 12) - EMA($close, 26))/$close - EMA((EMA($close, 12) - EMA($close, 26))/$close, 9)/$close' close_EXP = '($close)'` fields = [close_EXP] # close itself names = ['close_itself'] print('label test is trying to set label') labels = ['((Ref($close, -3) + Ref($close, -2) + Ref($close, -1)) / 3) / Ref($close) - 1'] # set label to IDC label_names = ['LABEL_IDC'] data_loader_config = { "feature": (fields, names), "label": (labels, label_names), } print('label test is trying to load data') data_loader = QlibDataLoader(config=data_loader_config) df = data_loader.load(instruments='csi300', start_time='2010-01-01', end_time='2010-01-31') df.to_csv(os.path.join(model_saving_uri,'label_mean-3_try.csv')) print(df) print('label test data is done')

    print('done...')

    Result from running this simple test is a long error message:

    TypeError Traceback (most recent call last) ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset_init_.py in init(self, handler, segments, **kwargs) 113 } 114 """ --> 115 self.handler: DataHandler = init_instance_by_config(handler, accept_types=DataHandler) 116 self.segments = segments.copy() 117 self.fetch_kwargs = {}

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\utils_init_.py in init_instance_by_config(config, default_module, accept_types, try_kwargs, **kwargs) 334 # 1: XXX() got multiple values for keyword argument 'YYY' 335 # 2: `XXX() got an unexpected keyword argument 'YYY' --> 336 return klass(**cls_kwargs, **kwargs) 337 338

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\contrib\data\handler.py in init(self, instruments, start_time, end_time, freq, infer_processors, learn_processors, fit_start_time, fit_end_time, filter_pipe, inst_processor, **kwargs) 78 } 79 ---> 80 super().init( 81 instruments=instruments, 82 start_time=start_time,

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\handler.py in init(self, instruments, start_time, end_time, data_loader, infer_processors, learn_processors, shared_processors, process_type, drop_raw, **kwargs) 387 self.process_type = process_type 388 self.drop_raw = drop_raw --> 389 super().init(instruments, start_time, end_time, data_loader, **kwargs) 390 391 def get_all_processors(self):

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\handler.py in init(self, instruments, start_time, end_time, data_loader, init_data, fetch_orig) 103 if init_data: 104 with TimeInspector.logt("Init data"): --> 105 self.setup_data() 106 super().init() 107

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\handler.py in setup_data(self, init_type, **kwargs) 523 """ 524 # init raw data --> 525 super().setup_data(**kwargs) 526 527 with TimeInspector.logt("fit & process data"):

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\handler.py in setup_data(self, enable_cache) 147 with TimeInspector.logt("Loading data"): 148 # make sure the fetch method is based on a index-sorted pd.DataFrame --> 149 self._data = lazy_sort_index(self.data_loader.load(self.instruments, self.start_time, self.end_time)) 150 # TODO: cache 151

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\loader.py in load(self, instruments, start_time, end_time) 135 if self.is_group: 136 df = pd.concat( --> 137 { 138 grp: self.load_group_df(instruments, exprs, names, start_time, end_time, grp) 139 for grp, (exprs, names) in self.fields.items()

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\loader.py in (.0) 136 df = pd.concat( 137 { --> 138 grp: self.load_group_df(instruments, exprs, names, start_time, end_time, grp) 139 for grp, (exprs, names) in self.fields.items() 140 },

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\dataset\loader.py in load_group_df(self, instruments, exprs, names, start_time, end_time, gp_name) 211 212 freq = self.freq[gp_name] if isinstance(self.freq, dict) else self.freq --> 213 df = D.features( 214 instruments, exprs, start_time, end_time, freq=freq, inst_processors=self.inst_processor.get(gp_name, []) 215 )

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\data.py in features(self, instruments, fields, start_time, end_time, freq, disk_cache, inst_processors) 1014 ) 1015 except TypeError: -> 1016 return DatasetD.dataset(instruments, fields, start_time, end_time, freq, inst_processors=inst_processors) 1017 1018

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\data.py in dataset(self, instruments, fields, start_time, end_time, freq, inst_processors) 749 end_time = cal[-1] 750 --> 751 data = self.dataset_processor( 752 instruments_d, column_names, start_time, end_time, freq, inst_processors=inst_processors 753 )

    ~\AppData\Roaming\Python\Python38\site-packages\qlib\data\data.py in dataset_processor(instruments_d, column_names, start_time, end_time, freq, inst_processors) 522 zip( 523 inst_l, --> 524 ParallelExt(n_jobs=workers, backend=C.joblib_backend, maxtasksperchild=C.maxtasksperchild)(task_l), 525 ) 526 )

    ~\AppData\Roaming\Python\Python38\site-packages\joblib\parallel.py in call(self, iterable) 1054 1055 with self._backend.retrieval_context(): -> 1056 self.retrieve() 1057 # Make sure that we get a last message telling us we are done 1058 elapsed_time = time.time() - self._start_time

    ~\AppData\Roaming\Python\Python38\site-packages\joblib\parallel.py in retrieve(self) 933 try: 934 if getattr(self._backend, 'supports_timeout', False): --> 935 self._output.extend(job.get(timeout=self.timeout)) 936 else: 937 self._output.extend(job.get())

    ~.conda\envs\pt\lib\multiprocessing\pool.py in get(self, timeout) 769 return self._value 770 else: --> 771 raise self._value 772 773 def _set(self, i, obj):

    TypeError: init() missing 1 required positional argument: 'N'

    It seems the error lies in involking multiprocessing from joblib. I can't handle an error so deep down there, could someone look into this?

    From searching on web I got a possible reason that somewhere in a package is missing a 'self' in the init() function. While I can't tell it's from the code of Qlib or some other place. My own code was too simple to directly call any initiation function except the dataloaderlp and it appears with enough parameters sent in 'config' argument.

    Thanks.

    question stale 
    opened by hensejiang 13
  • Workflow questions

    Workflow questions

    First of all, thanks to you developers and Qlib contributors. This platform is contributing to my learning of the Quant world and especially Python programming, topics that I'm still a beginner.

    I'm from Brazil and running Qlib strategies for brazilian stocks. Luckily I managed to convert my dataset originally from CSV to qlib format and it seems to be working.

    That's why I have some doubts about the workflow, which if solved, will help me to flow in the work here.

    1. In โ€œmarketโ€ do I define a benchmark for my country? In Brazil we use the IBOVESPA benchmark, but as I have not yet selected the stocks that make up the index, I left this option as โ€œallโ€. Whereas the โ€œmarketโ€ option is where I define the benchmark. What is the โ€œbenchmarkโ€ option in the workflow? lol is confusing to me. Was it my portfolio?

    image

    1. I am using LGBModel for testing. I see that in the prediction results the โ€œsr.generate()โ€ generates a score of the actions. What would this result be? Are the stocks that improve performed in the backtest?

    image

    1. If I understand the โ€œmarketโ€ and โ€œbenchmarkโ€ functions in workflow I should understand these results below. But I would like to know if I can change the frequency to โ€œweekโ€ instead of โ€œdayโ€? Would I have to change my dataset?

    One suggestion: write some comments in the workflow_by_code.ipynb file I think it will help beginners like me.

    question stale 
    opened by ander-son-almeida 13
  • [BUGFIX] allow sell in limit-up case and allow buy in limit-down case in topk strategy

    [BUGFIX] allow sell in limit-up case and allow buy in limit-down case in topk strategy

    Description

    Allow sell in limit-up case and allow buy in limit-down case Also fixed some typo/typehints.

    Motivation and Context

    To be consistent with real world, in which we can buy at limit-down (่ทŒๅœ) and sell at limit up (ๆถจๅœ).

    How Has This Been Tested?

    • [x] Pass the test by running: pytest qlib/tests/test_all_pipeline.py under upper directory of qlib.
    • [ ] If you are adding a new feature, test on your own test scripts.

    Screenshots of Test Results (if appropriate):

    1. Pipeline test: image
    2. Your own tests:

    Types of changes

    • [x] Fix bugs
    • [ ] Add new feature
    • [ ] Update documentation
    waiting for triage 
    opened by qianyun210603 0
  • TCN model code error

    TCN model code error

    ๐Ÿ› Bug Description

    qlib/contrib/model/pytorch_tcn_ts.py line 171-line174 feature = data[:, :, 0:-1].to(self.device) label = data[:, -1, -1].to(self.device)

            pred = self.TCN_model(feature.float())
    

    To Reproduce

    Steps to reproduce the behavior:

    1. change seq len as 10, and run \examples\benchmarks\TCN\workflow_config_tcn_Alpha158.yaml

    Expected Behavior

    Screenshot

    image x as input with shape(batch,seq_len,feat), but right input should be as shape(batch,feat,seq_len,) so nn.Conv1d can be calculate

    Environment

    Note: User could run cd scripts && python collect_info.py all under project directory to get system information and paste them here directly.

    • Qlib version:
    • Python version:
    • OS (Windows, Linux, MacOS):
    • Commit number (optional, please provide it if you are using the dev version):

    Additional Notes

    bug 
    opened by yycyyyc321 0
  • There is a vulnerability in lxml:4.8.0,upgrade recommended

    There is a vulnerability in lxml:4.8.0,upgrade recommended

    https://github.com/microsoft/qlib/blob/667fb0e4d99012dc24aa468230eabcd240fcde8a/scripts/data_collector/br_index/requirements.txt#L11

    CVE-2022-2309

    Recommended upgrade version๏ผš4.9.1

    opened by QiAnXinCodeSafe 0
  • There is a vulnerability in certifi:2021.10.8,upgrade recommended

    There is a vulnerability in certifi:2021.10.8,upgrade recommended

    https://github.com/microsoft/qlib/blob/667fb0e4d99012dc24aa468230eabcd240fcde8a/scripts/data_collector/br_index/requirements.txt#L3

    CVE-2022-23491

    Recommended upgrade version๏ผš2022.12.7

    opened by QiAnXinCodeSafe 0
  • how to save rolling trained models ?

    how to save rolling trained models ?

    โ“ Questions and Help

    hi, I know that we can save trained models with R.save_object(trained_model=model). but in the rolling example where the model is trained like : "trainer = TrainerR(); trainer(tasks)". I want to save all the trained models , but I am not sure how to add such a save model option? thanks

    question 
    opened by specialuse 1
  • Bump certifi from 2021.10.8 to 2022.12.7 in /scripts/data_collector/br_index

    Bump certifi from 2021.10.8 to 2022.12.7 in /scripts/data_collector/br_index

    Bumps certifi from 2021.10.8 to 2022.12.7.

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.9.0)
  • v0.9.0(Dec 9, 2022)

    Changes

    • Qlib data doc @chenditc (#1207)

    ๐ŸŒŸ Features

    • Fix logging_level: make logging level specified in qlib.init applies to all loggers @qianyun210603 (#1368)
    • Add early stopping to double ensemble model, add example @chenditc (#1375)
    • Set _artifact_uri when mlflow_run is not None. @ChiahungTai (#1367)
    • Optimize the implementation of uri & Fix async log bug @you-n-g (#1364)
    • update TSDataSampler refineing the memory layout of data array to speed up NN training @peteryang1 (#1342)
    • Refine RL todos @lihuoran (#1332)
    • Don't disable existing logger when initializing qlib. @jingedawang (#1339)
    • Use mock data for element operator tests. @ChiahungTai (#1330)
    • fixed_flake8_error_in_CI @SunsetWolf (#1325)
    • optimize_CI @SunsetWolf (#1314)
    • Migrate amc4th training @lihuoran (#1316)
    • Add REG_US and REG_TW into test case: test_utils.py. @ChiahungTai (#1310)
    • RL backtest with simulator @lihuoran (#1299)
    • General handler for open source data preprocessing @Arthur-Null (#1302)
    • Migrate backtest logic from NT @lihuoran (#1263)
    • Qlib simulator refinement (redo of PR 1244) @lihuoran (#1262)
    • Add simplified download command @HyeongminMoon (#1234)
    • Add csi500 benchmark for MLP model. @jingedawang (#1215)
    • Add Linear model results on dataset=csi500 @aprilpear (#1210)
    • Add result of DoubleEnsemble model on csi500 @huajunzhao (#1201)
    • Update LightGBM alpha158 csi500 result @tecton (#1199)
    • Add csi500 experiment result to CatBoost @lcrun (#1197)
    • More time for slow test @you-n-g (#1247)
    • Migrate NeuTrader to Qlib RL @lihuoran (#1169)
    • Update handler.py to fix CI @you-n-g (#1227)
    • Update test_qlib_from_source_slow.yml @you-n-g (#1222)
    • Add data handler for order book data @Arthur-Null (#1212)
    • Use average weights in DoubleEnsemble. @lwwang1995 (#1205)
    • Be compatible with Google Colab @you-n-g (#1188)
    • Add a make.bat file in docs folder for Windows @bingyao (#1131)
    • Adding ChangeInstrument op @wan9c9 (#1005)
    • Add retry for git actions & Fix MacOS Segment Error @you-n-g (#1173)
    • Backtest Mypy @lihuoran (#1130)
    • Auto log uncommmitted code @you-n-g (#1167)
    • Qlib RL framework (stage 2) - trainer @ultmaster (#1125)
    • change_pitdata_source @SunsetWolf (#1171)
    • split_CI @SunsetWolf (#1141)
    • Add time limit for CI @you-n-g (#1127)

    ๐Ÿ› Bug Fixes

    • Fix warning in processor.py. @ChiahungTai (#1386)
    • Fix RL example bug @lihuoran (#1384)
    • Resolve issues while running Automatic update of daily frequency data (from yahoo finance) for US region @HyeongminMoon (#1358)
    • Fix RL command Error @you-n-g (#1382)
    • Fix the Errors/Warnings when building Qlib's documentation @MaximSmolskiy (#1381)
    • fix csi500 end date issue @qianyun210603 (#1373)
    • Fixed log_param error @SunsetWolf (#1362)
    • Bug fix for Rank and WMA operators @qianyun210603 (#1228)
    • fix bug in clip_outlier in class RobustZScoreNorm(Processor) @NotF404 (#1294)
    • Fix Import Path Error @you-n-g (#1347)
    • fix position access error @lerit (#1267)
    • fix dump_bin @lerit (#1273)
    • Update cache.py @wony-zheng (#1329)
    • fixed_flake8_error_in_CI @SunsetWolf (#1325)
    • optimize_CI @SunsetWolf (#1314)
    • Fix _update_dealt_order_amount bug. @lihuoran (#1291)
    • Fix CI pylint bug @you-n-g (#1270)
    • fix_yahoo_collector_bug @SunsetWolf (#1257)
    • fixes #1187 error "Please install necessary libs for CatBoostModel." @OussCHE (#1246)
    • BUGFIX: remove_fields_space() function will drop Feature object field @wony-zheng (#1213)
    • chore: bugfix, judging system platform error on Mac @plpycoin (#1177)
    • fix bug on TRA dataset @HyeongminMoon (#1135)
    • Fix mount path bug @you-n-g (#1129)

    ๐Ÿ“š Documentation

    • Fix the Errors/Warnings when building Qlib's documentation @MaximSmolskiy (#1381)
    • Fix typos and grammar errors in docstrings and comments @qianyun210603 (#1366)
    • Fix typo. @ChiahungTai (#1365)
    • Fix the Errors with unexpected indentation when building Qlib's documentation @MaximSmolskiy (#1352)
    • Fix the Warnings with duplicate object description when building Qlib's documentation @MaximSmolskiy (#1353)
    • Fix the Warnings in rst files when building Qlib's documentation @MaximSmolskiy (#1349)
    • Add docs for qlib.rl @lwwang1995 (#1322)
    • Correct errors and typos in doc strings @qianyun210603 (#1338)
    • Update README.md @wan9c9 (#1279)
    • fix:doc for search_records @lerit (#1287)
    • Fix typo @ChiahungTai (#1308)
    • Add docs for the reampling example. @you-n-g (#1285)
    • Expm typo fix add log @wan9c9 (#1271)
    • update recorder.rst fixed typo @animic (#1264)
    • Update signal_strategy.py @ChengzhenDu (#1251)
    • Refine type hint and recorder @you-n-g (#1248)
    • add liability @wangershi (#1230)
    • Update README.md fixed typo @EricChangMSR (#1221)
    • Update the math of Metrics @you-n-g (#1211)
    • Update docs of strategy @you-n-g (#1209)
    • Update Data Updating Docs @you-n-g (#1203)
    • Add introduction for workflow_by_code.py @you-n-g (#1186)
    • Update FAQ for benchmarks @you-n-g (#1185)
    • Improve the style of documentation @bingyao (#1132)
    • Update README.md @lwwang1995 (#1179)
    • Update test_qlib_from_source_slow.yml's timeout setting. @you-n-g (#1178)
    • Qlib dev doc @you-n-g (#1142)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.6(Jun 15, 2022)

    Changes

    ๐ŸŒŸ Features

    • Csi500 example @you-n-g (#1126)
    • Add log info for ensemble @you-n-g (#1113)
    • opt local trainer (better mem releasing) @you-n-g (#1116)
    • Refine backtest codes @lihuoran (#1120)
    • fix_pylint_for_CI @SunsetWolf (#1119)
    • change_datasource @SunsetWolf (#1109)
    • Add .idea/ into gitignore @lihuoran (#1110)
    • Add .idea/ into gitignore @lihuoran (#1108)
    • init_instance_by_config enhancement @you-n-g (#1103)
    • Qlib RL framework (stage 1) - single-asset order execution @ultmaster (#1076)
    • fix_issue_1060 @SunsetWolf (#1092)
    • add_test_pit @SunsetWolf (#1089)
    • fix_macos_CI @SunsetWolf (#1081)
    • fix SepDataFrame when we del it to empty @you-n-g (#1082)
    • Make sepdf more like DataFrame @you-n-g (#1080)

    ๐Ÿ› Bug Fixes

    • Fix hist_ref in update.py @you-n-g (#1096)
    • add gym @you-n-g (#1104)
    • Update detailed_workflow.ipynb @ChiahungTai (#1084)
    • fix_issue_715 @SunsetWolf (#1070)
    • Fixed pandas FutureWarning @Hubedge (#1073)
    • Missing f prefix on f-strings fix @code-review-doctor (#1072)

    ๐Ÿ“š Documentation

    • Fixed a few mixed Chinese punctuation typos @bingyao (#1123)
    • Refine backtest codes @lihuoran (#1120)
    • Add explanation for the evalution metrics of Qlib @you-n-g (#1090)
    • Qlib RL framework (stage 1) - single-asset order execution @ultmaster (#1076)
    • Update README.md @you-n-g (#1091)
    • fix_issue_1060 @SunsetWolf (#1092)
    • Add instructions to add models @you-n-g (#1088)
    • Yahoo data Docs @you-n-g (#1077)
    • fix_macos_CI @SunsetWolf (#1081)
    • Fixed typos in workflow.rst @jingedawang (#1068)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.5(Apr 24, 2022)

    Changes

    • update doc for TopK-Drop @wan9c9 (#1015)
    • Known Limitations In Recorder @you-n-g (#999)
    • Fix pit docs format @Chaoyingz (#957)
    • Add REG_TW. @ChiahungTai (#955)

    ๐ŸŒŸ Features

    • fast fillna @you-n-g (#1074)
    • fix_issue_1019 @SunsetWolf (#1046)
    • Change Power to a NpPairOperator @wuzhe1234 (#1052)
    • Use the region in qlib.config for FileCalendarStorage. @ChiahungTai (#1049)
    • Update test_macos.yml with test doc @Wangwuyi123 (#1055)
    • update ci with test doc @Wangwuyi123 (#1054)
    • Add the HIST and IGMTF model on Alpha360 @Wentao-Xu (#1040)
    • Add high-frequency feature engineering code @Arthur-Null (#1022)
    • Add Qlib notebook tutorial @you-n-g (#1037)
    • Ibovespa index support @igor17400 (#990)
    • Fix Chinese punctuation regex comment @Chaoyingz (#1012)
    • Add pre-commit @you-n-g (#992)
    • Support feature names contain Chinese punctuation @Chaoyingz (#1003)
    • Add PRef operator (#988) @Chaoyingz (#1000)
    • Add lightgbm min version. @ChiahungTai (#995)
    • Add backtest example to online simulation @you-n-g (#984)
    • Optimize the pit collector script @Chaoyingz (#982)
    • Fix pit download_data script TypeError (#978) @Chaoyingz (#979)
    • Skip idx.is_lexsorted() when pandas version is larger than 1.3.0. @ChiahungTai (#973)
    • Use callback in LGBM.train. @ChiahungTai (#974)
    • Remove redundant import [fix pylint] @you-n-g (#962)
    • feat: add instrument context to inst_processor @PalanQu (#959)
    • Fix csi500 @SunsetWolf (#938)
    • Support Point-in-time Data Operation @bxdd (#343)

    ๐Ÿ› Bug Fixes

    • Fix shared DF Error @you-n-g (#1044)
    • fix tra dataset bug @you-n-g (#1050)
    • Fixed issue #943 about TCTS init_fore_model @TuozhenLiu (#1047)
    • chore: bug-fix for crypto data collector @plpycoin (#1038)
    • Update setup.py to fix doc @Wangwuyi123 (#1043)
    • update cli.py @wan9c9 (#1008)
    • Fix pit download_data script TypeError (#978) @Chaoyingz (#979)
    • Fix load_object bug @you-n-g (#977)
    • safe remove file and more friendly log @you-n-g (#967)

    ๐Ÿ“š Documentation

    • Update setup.py @you-n-g (#1048)
    • Update README.md @qinmoelei (#1039)
    • Add Qlib notebook tutorial @you-n-g (#1037)
    • Add docs for CSRankNorm @you-n-g (#1032)
    • fix ddgda run all bug & pylint @you-n-g (#1031)
    • Fix format for PULL_REQUEST_TEMPLATE.md @Chaoyingz (#1001)
    • Add lightgbm min version. @ChiahungTai (#995)
    • Add backtest example to online simulation @you-n-g (#984)
    • Fix comment typo @Chaoyingz (#987)
    • fix-issue948 @SunsetWolf (#986)
    • Update report.rst Metric @you-n-g (#980)
    • Update Tool Info @you-n-g (#981)
    • Update yahooquery marked words @Wangwuyi123 (#966)
    • fix annotation in PIT script @bxdd (#958)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.4(Mar 8, 2022)

    Changes

    • Update initialization.rst @SunsetWolf (#941)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/TabNet @dependabot (#898)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/Transformer @dependabot (#897)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/hyperparameter/LightGBM @dependabot (#896)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/XGBoost @dependabot (#895)

    ๐ŸŒŸ Features

    • [949] - Remove argument internal in BaseRun::download_data. @ChiahungTai (#953)
    • Fix error message in position.py @cuicorey (#922)
    • Fix wrong error messages. @ChiahungTai (#946)
    • [931] Remove mutable default argument. @ChiahungTai (#932)
    • performance mprovement @you-n-g (#921)
    • Add data analysis feature for report @you-n-g (#918)
    • Enhance pytorch nn @you-n-g (#917)
    • Fix pylint @SunsetWolf (#888)
    • Add more docs about initialization @you-n-g (#880)
    • Make the logic of handler Clear @you-n-g (#877)

    ๐Ÿ› Bug Fixes

    • fix bug @wan9c9 (#950)
    • [930] Fix typo HasingStockStorage to HashingStockStorage. @ChiahungTai (#947)
    • Support Reweighter for HighFreq Model @you-n-g (#908)
    • add weight param @aurora5161 (#907)
    • fix workflow bug @you-n-g (#882)

    ๐Ÿ“š Documentation

    • Update Metric Explanation @you-n-g (#920)
    • Add data analysis feature for report @you-n-g (#918)
    • Update README.md @wendili-cs (#915)
    • Some links about high-frequency trading @you-n-g (#884)
    • Update Portfolio README.md @you-n-g (#900)
    • Update Benchmark Docs @you-n-g (#899)
    • Docs improvement of backtest @you-n-g (#885)
    • Update handler processors docs @you-n-g (#879)
    • expression example @you-n-g (#887)
    • Docs to get original price @you-n-g (#878)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.3(Jan 19, 2022)

    Changes

    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/ADARNN @dependabot (#870)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/ADD @dependabot (#869)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/ALSTM @dependabot (#868)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/CatBoost @dependabot (#867)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/DoubleEnsemble @dependabot (#866)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/GRU @dependabot (#833)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/LightGBM @dependabot (#830)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/SFM @dependabot (#829)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/TCTS @dependabot (#834)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/GATs @dependabot (#831)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/TRA @dependabot (#832)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/Localformer @dependabot (#835)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/MLP @dependabot (#836)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/TCN @dependabot (#837)
    • Bump numpy from 1.17.4 to 1.21.0 in /examples/benchmarks/LSTM @dependabot (#838)

    ๐ŸŒŸ Features

    • fall back error @you-n-g (#875)
    • Disable Cache By Default @you-n-g (#871)
    • Supporting Arctic Backend Provider & Orderbook, Tick Data Example @luocy16 (#744)
    • Add future calendar collector @zhupr (#795)

    ๐Ÿ› Bug Fixes

    • Remove arctic from Qlib core to Contrib @you-n-g (#865)
    • Fix pytorch_nn.py step bug @you-n-g (#864)

    ๐Ÿ“š Documentation

    • Add Desc For the limitation of 3.9 @Wangwuyi123 (#863)
    • Fix code and docs for issues @you-n-g (#853)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.1(Jan 15, 2022)

    Changes

    ๐ŸŒŸ Features

    • pylint code refine & Fix nested example @you-n-g (#848)
    • chore: remove hard code input dimension of model pytorch_tcts @PalanQu (#843)
    • [840] - Test case for operators. @ChiahungTai (#841)
    • DDG-DA paper code @you-n-g (#743)
    • [807] Move the REG_CONSTANT/EPS to constant.py. @ChiahungTai (#811)
    • Some Optimization of online code @you-n-g (#784)
    • Add Crypto dataset from coingecko @b4thesunrise (#733)
    • Reformat example data names: use {region}_data for 1-day data, and {region}_data_1min for 1-min data @cning112 (#781)
    • support optimization based strategy @evanzd (#754)
    • Add hook for supporting RL strategy @you-n-g (#768)
    • Enhance Task Dict Var @you-n-g (#778)
    • Add Cache to avoid frequently loading Calendar @you-n-g (#766)
    • Update BCELoss in MLP model @cuicorey (#756)
    • solve VERSION.txt bug @b4thesunrise (#732)
    • Hyperopt upgrade @upgradvisor-bot (#741)
    • Add method parameter for volume @you-n-g (#734)

    ๐Ÿ› Bug Fixes

    • Fix the read the docs error @you-n-g (#852)
    • pylint code refine & Fix nested example @you-n-g (#848)
    • fix: highfreq_gdbt_model of prepare data @PalanQu (#846)
    • Fix some warnings in log.py. @ChiahungTai (#805)
    • Fix $volume normalization issue @2young-2simple-sometimes-naive (#792)
    • Fix account shared bug @you-n-g (#791)
    • fix dump_bin:DumpDataUpdate @zhupr (#783)
    • Fix torch models on cpu @cning112 (#782)
    • fix cn_index collector @zhupr (#780)
    • Use encoding="utf-8" in open. @ChiahungTai (#773)
    • fix IndexError of the last trading day in backtest calendar @zhupr (#751)
    • remove unneeded code from workflow_by_code.ipynb && fix analysis_model_performance @zhupr (#740)

    ๐Ÿ“š Documentation

    • Add description of the pr template. @ChiahungTai (#812)
    • Fix typos and comments. @ChiahungTai (#815)
    • Update README.md @you-n-g (#802)
    • Fix BaseStrategy path. @ChiahungTai (#801)
    • Add a more understandable example of data workflow @you-n-g (#797)
    • fix_typo @SunsetWolf (#790)
    • Update Contributor list @you-n-g (#779)
    • Update Docs of Alpha360 @you-n-g (#777)
    • Replace scripts/get_data.py to get_data.py. @ChiahungTai (#775)
    • Fix typo leanable to learnable. @ChiahungTai (#774)
    • Add docs about the patameters @you-n-g (#771)
    • add description of dataset document @zhupr (#742)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.0(Dec 7, 2021)

    Changes

    • docs improvement @you-n-g (#730)
    • Fix backtest @zhupr (#719)
    • add logger @demon143 (#709)
    • Add SigAnaRecord in to workflow_by_code.py @you-n-g (#707)
    • support adding from date when updating pred @you-n-g (#703)
    • Add A New Baseline: ADD @f-cg (#704)
    • Fix high-freq data @zhupr (#702)
    • Update task_management.rst @demon143 (#700)
    • Update workflow_by_code.ipynb @wan9c9 (#697)
    • Update task_management.rst @demon143 (#654)
    • Merging Backtest improve @you-n-g (#694)
    • Add AdaRNN baseline. @lwwang1995 (#689)
    • add ops_warning_log to config @zhupr (#685)
    • Callable Exp @you-n-g (#683)
    • bugfix: Fix the problem that caused highfreq's yaml to be unusable @Ckend (#678)
    • add default protocol_version @zhupr (#677)
    • An example to get index from TSDataSampler @you-n-g (#679)
    • handler demo cache @you-n-g (#606)
    • Improve the backtest design and APIs @you-n-g (#650)
    • More citations @markzhao98 (#673)
    • Add A New Baseline: TCN @f-cg (#668)
    • GPU identification bug fix for GATs @markzhao98 (#669)
    • fix 'duplicate axis' error when updating cache @zhupr (#661)
    • add logs in case of ops.py errors @zhupr (#659)
    • Adjusting gbdt.py's parameter @you-n-g (#660)

    ๐ŸŒŸ Features

    • Auto injecting model and dataset for Recorder @you-n-g (#645)
    • Checking dataset empty @you-n-g (#647)
    • Update TCTS. @lwwang1995 (#643)
    • Add support for MacOS-11 @zhupr (#630)

    ๐Ÿ› Bug Fixes

    • Fix update record bug @you-n-g (#723)
    • improve the doc of auto init @you-n-g (#541)
    • fix workflow_config_lightgbm_multi_freq.yaml @zhupr (#635)
    • remove 3.6 @you-n-g (#629)

    ๐Ÿ“š Documentation

    • Update the docs of ops.py @you-n-g (#718)
    • improve the doc of auto init @you-n-g (#541)
    • more detailed docs for workflow @you-n-g (#639)
    • Update manage.py @demon143 (#628)
    • Update benchmark based on new backtest @you-n-g (#634)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.0a1(Sep 30, 2021)

    Changes

    • Merge nested main @wangwenxi-handsome (#597)

    ๐ŸŒŸ Features

    • Support Highfreq Backtest with the Model/Rule/RL Strategy @bxdd (#438)
    Source code(tar.gz)
    Source code(zip)
  • v0.7.2(Sep 30, 2021)

    Changes

    • make the prediction update more friendly @you-n-g (#609)
    • Fix Models @you-n-g (#483)
    • update change doc @demon143 (#623)
    • Update initialization.rst @demon143 (#622)
    • Share version number @you-n-g (#620)
    • Add file lock for MLflowExpManager @you-n-g (#619)
    • Update code_standard.rst @demon143 (#587)
    • update cvxpy version @you-n-g (#616)

    ๐Ÿ› Bug Fixes

    • Fix the type of filter_pipe @zhupr (#611)
    Source code(tar.gz)
    Source code(zip)
  • v0.7.1(Sep 16, 2021)

    Changes

    • Update setup.py @anukaal (#600)
    • Fix SimpleDatasetCache @zhupr (#604)
    • Fix undefined names in Python code @cclauss (#599)
    • Supporting shared processor @you-n-g (#596)
    • test.yml: Remove redundant code @cclauss (#595)
    • fix typos @saintmalik (#592)
    • Fix TRA @evanzd (#591)
    • Modify the Feature to be case sensitive @zhupr (#589)
    • Update manage.py @demon143 (#586)
    • Update FAQ.rst @zhupr (#588)
    • Multiple freq support @zhupr (#580)
    • without_conda @Wangwuyi123 (#575)
    • Update ensemble.py @demon143 (#560)
    • Update README.md @you-n-g (#546)
    • Update strategy.py @ZhangTP1996 (#545)
    • fix TRA when logdir is None @evanzd (#542)
    • refactor TRA @evanzd (#531)
    • refactor online serving rolling api @you-n-g (#539)
    • sort index after loader @you-n-g (#538)
    • Update data.rst @panshuaiyin (#532)
    • Add two transformer models via upload @yingtaoluo (#508)
    • Fix macos test ci @zhupr (#530)
    • Remove the date fetch from the expression and calculate it when used instead @zhupr (#527)
    • Update qrun to automaticly save the config to the artifacts uri @wuzhe1234 (#525)
    • Add a check if change is mutated to YahooNormalize1d @zhupr (#524)
    • Issue fix @slowy07 (#523)
    • Add filter string to mlflow experiment list_recorders function. @chaosddp (#512)
    • Add a check if change is mutated to YahooNormalize1d @zhupr (#514)
    • Bug fix: ClientProvider not set connection to calendar and instrument provider when initializing. @chaosddp (#500)
    • updated readme of yahoo collector where region parameter was incorrect @2796gaurav (#504)

    ๐ŸŒŸ Features

    • MVP for Indian Stocks in qlib using yahooquery @2796gaurav (#513)

    ๐Ÿ› Bug Fixes

    • check lexsort in the 'lazy_sort_index' function @markzhao98 (#566)
    • Fix multi-process loop calls @zhupr (#574)
    • Fix shared task dict BUG @you-n-g (#576)
    Source code(tar.gz)
    Source code(zip)
  • v0.7.0(Jul 11, 2021)

    Changes

    • Update workflow.rst @xiaowuhu (#497)
    • Update workflow.rst @xiaowuhu (#496)
    • Update TCTS. @lwwang1995 (#495)
    • support check_transform_proc module_path @bxdd (#494)
    • Make OnlineToolR more user-friendly and fix some bugs @lzh222333 (#475)
    • examples/workflow_by_code.ipynd: fix an error in R.get_recorder() parโ€ฆ @docularxu (#481)
    • Add TRA Model @linhx25 (#479)
    • Support using config to register custom operators @bxdd (#476)
    • Set self.fitted = True instead of self._fitted. @topskychen (#478)
    • Support extend data @zhupr (#463)
    • simplify the code and prevent float when shifting @you-n-g (#473)
    • Update TCTS README. @lwwang1995 (#472)
    • Add TCTS baseline. @lwwang1995 (#464)
    • Remove non-existing parameter description @arisliang (#462)
    • fix DelayTrainerRM @lzh222333 (#459)
    • Multiprocessing support for Online Serving @lzh222333 (#435)
    • fix XGBoost predict error @zhupr (#457)
    • Add import stock pool in doc @arisliang (#452)
    • add get_feature_importance to model interpret @zhupr (#444)
    • Update 1min demo data in CSV format @arisliang (#442)
    • Remove repeated package from requirements @arisliang (#447)
    • Update integration.rst @arisliang (#448)
    • Update report.rst @arisliang (#450)
    • Fix YahooCollector can't download 1min data @zhupr (#441)
    • Update collector.py @arisliang (#440)
    • Update README.md @arisliang (#439)
    • add data storage @zhupr (#372)
    • Update README.md @arisliang (#433)
    • Fix get_module_by_module_path to support pickle module loaded from arbitrage source file @evanzd (#431)
    • LightGBM hyperparameter @ChengYen-Tang (#423)
    • Add configurable dataset to examples @zhupr (#416)
    • Add set_global_logger_level @zhupr (#412)
    • Add future trading date collector @zhupr (#405)
    • Fix online mode bugs @zhupr (#401)
    • update high freq demo @javaThonc (#358)
    • Fix print issue @D-X-Y (#381)
    • Modify get_exp & get_recorder api @Derek-Wds (#380)
    • Add DataLoader Based on DataHandler & Add Rolling Process Example & Restructure the Config & Setup_data @bxdd (#374)
    • Fix us_index collector @zhupr (#379)
    • Add MultiSegRecord and add segment kwargs in model.pred @D-X-Y (#378)
    • debug @lewwang1995 (#373)
    • Update notebook @Derek-Wds (#371)
    • fix docs @Flouse (#365)
    • Add load_object function for R @D-X-Y (#362)
    • Fix data doc @bxdd (#359)
    • Fix yahoo_collector @zhupr (#357)
    • Fix dump_bin.py && check_dump_bin.py @zhupr (#350)
    • Update init.py @wendili-cs (#351)
    • Update Contact Us Information @you-n-g (#348)
    • fix bug of consider TURE as boolean instead of stock code @2young-2simple-sometimes-naive (#347)
    • Fix errors when SignalRecord is not called before SigAna/PortAna @D-X-Y (#345)
    • Fix bugs in Ghost BN in TabNet and typos in README @D-X-Y (#337)
    • another typo of docs @Rekind1e (#333)
    • Fix typo of docs @Rekind1e (#332)
    • Fixed code quality issues @withshubh (#311)
    • Fix Various Bugs for contrib.pytorch_ models @D-X-Y (#329)
    • Add BaseCollector @zhupr (#324)
    • Move get_path to get_or_create_path, use the best model of SFM / TabNet @D-X-Y (#328)
    • Fix code in ops @bxdd (#318)
    • Fix collector doc @ChengYen-Tang (#272)
    • Update FAQ doc & Update ops docstring @bxdd (#300)
    • Update the Wrapper class to have an informative str representation @D-X-Y (#298)
    • Add a new method to benchmarks: DoubleEnsemble @meng-ustc (#286)
    • Update README.md @wendili-cs (#291)
    • Update filter.py @you-n-g (#277)
    • safe yaml loader @you-n-g (#273)
    • Update workflow.rst @lbaiao (#268)
    • Fix typo in Data Layer @miaekim (#265)
    • Add Qlib highfreq doc & Update DatatSet Init Method @bxdd (#257)
    • Fix typo in workflow_by_code.py @pingsutw (#259)
    • Fix Highfreq Freq @bxdd (#256)

    ๐ŸŒŸ Features

    • Online bug fix, enhancement & docs for dataset, workflow, trainer ... @you-n-g (#466)
    • init version of online serving and rolling @you-n-g (#290)
    • Modify set_global_logger_level use of contextmanager @zhupr (#418)
    • Stale bot update @Derek-Wds (#413)
    • Support start exp with given exp & recorder id @Derek-Wds (#404)
    • Add fund data as an example @wangershi (#292)
    • Support resuming recorder @Derek-Wds (#340)
    • Implement Enhanced Indexing as a Portfolio Optimizer @yongzhengqi (#280)
    • (1) Fix /0 bug in double_ensemble, (2) remove _default_uri for R/expm, (3) support model size in pytorch models @D-X-Y (#314)
    • Update repr for dataset/workflow classes and add uri kwarg for QlibRecorder @D-X-Y (#302)
    • Add model saving for qrun and workflow example @Derek-Wds (#264)
    • Update models to enable save/load @Derek-Wds (#261)

    ๐Ÿ› Bug Fixes

    • Online bug fix, enhancement & docs for dataset, workflow, trainer ... @you-n-g (#466)
    • Update Recorder Wrapper to prevent reinitialization @Derek-Wds (#471)
    • Fix exception hook bug @Derek-Wds (#461)
    • Fix bug and update doc @Derek-Wds (#419)
    • Fix logger pickling error @Derek-Wds (#407)
    • Update qlib logger @Derek-Wds (#393)
    • Support resuming recorder @Derek-Wds (#340)
    • (1) Fix /0 bug in double_ensemble, (2) remove _default_uri for R/expm, (3) support model size in pytorch models @D-X-Y (#314)
    • Fix pytorch ts model loader bug @Derek-Wds (#322)
    • Update repr for dataset/workflow classes and add uri kwarg for QlibRecorder @D-X-Y (#302)
    • Update Highfreq Handler & Ops / Fix a Highfreq Bug @bxdd (#254)
    • Update models to enable save/load @Derek-Wds (#261)
    • Update readme and setup.py @Derek-Wds (#258)
    • CI: the MacOS numpy bug. @Derek-Wds (#253)
    • Fix CI @Derek-Wds (#250)

    ๐Ÿ“š Documentation

    • Online bug fix, enhancement & docs for dataset, workflow, trainer ... @you-n-g (#466)
    • Fix bug and update doc @Derek-Wds (#419)
    • Update doc @Derek-Wds (#399)
    • Update Filter doc @Derek-Wds (#319)
    • Update docs about record-temp @Derek-Wds (#260)
    • update 1min docs @zhupr (#252)
    Source code(tar.gz)
    Source code(zip)
  • v0.6.2(Feb 2, 2021)

    Changes

    • move freq params to dataloader @you-n-g (#234)
    • Update pytorch_nn.py @wendili-cs (#241)
    • Update pytorch_alstm_ts.py @wendili-cs (#243)
    • Update pytorch_gats.py @wendili-cs (#244)
    • Update pytorch_gru.py @wendili-cs (#245)
    • Update pytorch_gru_ts.py @wendili-cs (#246)
    • Update pytorch_lstm.py @wendili-cs (#247)
    • Update pytorch_lstm_ts.py @wendili-cs (#248)
    • Update pytorch_alstm.py @wendili-cs (#242)
    • Fix bug in alpha360 @bxdd (#236)
    • Add filter_pipe API @Derek-Wds (#220)
    • Update data handler @you-n-g (#228)
    • Qlib Highfreq Support & Highfreq DataHanlder/Operator/Processor Examples @bxdd (#222)
    • Add paper year @Derek-Wds (#224)
    • Support yahoo 1min data @zhupr (#221)
    • Fix the error when the stock code is a number @zhupr (#78)
    • Support Register of Custom Feature Operators Easily @bxdd (#92)
    • Update pytorch_nn.py @wendili-cs (#213)
    • tabnet @javaThonc (#205)
    • for IDE auto-complete with global Wrapper @GoooIce (#201)
    • Update .gitignore @GoooIce (#203)
    • Add dataset standalone usage example @you-n-g (#200)
    • Support Return Order List in Backtest & Assign Executor in Config @bxdd (#198)
    • fix setup error @GoooIce (#197)
    • Update pytorch_lstm_ts.py @wendili-cs (#194)
    • Update pytorch_gru_ts.py @wendili-cs (#193)
    • Update pytorch_gats_ts.py @wendili-cs (#192)
    • Update pytorch_alstm_ts.py @wendili-cs (#191)
    • Security Fix for Arbitrary Code Execution - huntr.dev @huntr-helper (#189)
    • Update docs and add Python 3.9 CI @Derek-Wds (#178)
    • Update initialization.rst @GoooIce (#188)
    • Fix create_recorder bug @Derek-Wds (#182)
    • Fix unrecognized config bug @fzc621 (#183)
    • Fix some typo in qlib/tests/data.py @fzc621 (#179)
    • Supporting dict to define strategy in evaluate.py @you-n-g (#177)
    • Update workflow_config_gru_Alpha158.yaml @wendili-cs (#175)
    • Update workflow_config_lstm_Alpha158.yaml @wendili-cs (#174)
    • Update docs @Derek-Wds (#164)
    • Fix the first trading day of the calendar extra in report_df @zhupr (#125)
    • Fix recorder temp dir bug @Derek-Wds (#148)
    • better MemCacheUnit implement @hadrianl (#145)
    • Update alpha.rst @bxdd (#143)
    • add more doc to PortAnaRecord @you-n-g (#138)
    • fixing typos #4 @maciejdomagala (#135)
    • fixing typos #3 @maciejdomagala (#134)
    • Update benchmark performance @Derek-Wds (#97)
    • fixing typos #2 @maciejdomagala (#130)
    • Config.getattr should raise AttributeError @hadrianl (#129)
    • Refactor to Python3 style @Gwill (#119)
    • Demo @Derek-Wds (#122)
    • Add stale bot @Derek-Wds (#124)
    • Typo fix @maciejdomagala (#123)
    • Update CI and script @Derek-Wds (#118)
    • Update the Sign operation in ops.py @YifanDengWHU (#113)
    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Dec 1, 2020)

    Changes

    • Add AI baselines

      • CatBoost @javaThonc
      • TFT @wendili-cs
      • Linear @evanzd
      • ALSTM @Pikapikachuu @Don-ustc
      • SFM @javaThonc
      • LSTM & GRU @evanzd @lwwang1995
      • Gats @meng-ustc @Turtlesyu-27
      • XGBoost @javaThonc @lwwang1995
    • Fix and move to version 0.6.0 @Derek-Wds (#73)

    • Help to PR @you-n-g (#72)

    • refine docs @you-n-g (#71)

    • Fix ops bug & add raise comments of Skew Kurt @bxdd (#70)

    • Add download qlib_data docs @zhupr (#69)

    • Refactor collector @zhupr (#68)

    • Fix re about provider_uri & Fix 'exit not defined' error in ipython @bxdd (#67)

    • Add RiskModel and Portfolio Module @evanzd (#60)

    • Support csi100 data collection && Fix data collector @zhupr (#57)

    ๐ŸŒŸ Features

    • Refactor Qlib interface @you-n-g @Derek-Wds @lwwang1995 @evanzd @zhupr @wendili-cs @javaThonc @meng-ustc @Don-ustc @Pikapikachuu @bxdd (#56)
    • support non-full-fill rate of executor @you-n-g (#66)
    • Make the DNN model compatible with CPU & Update the Estimator doc @bxdd (#49)

    ๐Ÿ› Bug Fixes

    • fix the float conversion bug @you-n-g (#62)
    • fix requirements.txt @morristai (#45)

    ๐Ÿ“š Documentation

    • Fix typo @ogabrielluiz (#55)
    • Make the DNN model compatible with CPU & Update the Estimator doc @bxdd (#49)
    • Update CI & add black formatter @Derek-Wds (#51)
    • Update badges in REAME.md @bxdd (#44)
    Source code(tar.gz)
    Source code(zip)
    pyqlib-0.6.0-cp36-cp36m-macosx_10_14_x86_64.whl(254.74 KB)
    pyqlib-0.6.0-cp36-cp36m-manylinux1_x86_64.whl(608.91 KB)
    pyqlib-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl(608.91 KB)
    pyqlib-0.6.0-cp36-cp36m-win_amd64.whl(260.37 KB)
    pyqlib-0.6.0-cp37-cp37m-macosx_10_14_x86_64.whl(253.50 KB)
    pyqlib-0.6.0-cp37-cp37m-manylinux1_x86_64.whl(611.79 KB)
    pyqlib-0.6.0-cp37-cp37m-manylinux2010_x86_64.whl(611.79 KB)
    pyqlib-0.6.0-cp37-cp37m-win_amd64.whl(260.14 KB)
    pyqlib-0.6.0-cp38-cp38-macosx_10_14_x86_64.whl(254.07 KB)
    pyqlib-0.6.0-cp38-cp38-manylinux1_x86_64.whl(647.67 KB)
    pyqlib-0.6.0-cp38-cp38-manylinux2010_x86_64.whl(647.67 KB)
    pyqlib-0.6.0-cp38-cp38-win_amd64.whl(261.91 KB)
  • v0.5.1(Oct 1, 2020)

    Changes

    • Add the CI/CD
      • add the test CI @Derek-Wds
      • add the publishing action to support pip installation @bxdd
    • Fix some bugs
      • Fix bugs in test scripts @you-n-g @zhupr
      • Add the error message when using Qlib in the repository directory @bxdd
    • Add a simpler dataset @zhupr
    • Update the documentation
      • Add the badges @bxdd
      • Add the FAQ document @zhupr
      • Add the description for the new installation method (pip) @bxdd
      • Fix some other errors @wendili-cs @vanshg

    ๐ŸŒŸ Features

    • Release v0.5.1 @you-n-g (#31)

    ๐Ÿ› Bug Fixes

    • Release v0.5.1 @you-n-g (#31)

    ๐Ÿ“š Documentation

    • Fix typo in examples README @vanshg (#32)
    • add test and mod doc @you-n-g (#17)
    • Update data.rst @wendili-cs (#24)
    • Update README.md @wendili-cs (#22)
    • Update estimator.rst @wendili-cs (#23)
    • Add a Gitter chat badge to README.md @gitter-badger (#21)
    • Update data related information @Derek-Wds (#16)
    Source code(tar.gz)
    Source code(zip)
    pyqlib-0.5.1-cp36-cp36m-macosx_10_14_x86_64.whl(206.06 KB)
    pyqlib-0.5.1-cp36-cp36m-manylinux1_x86_64.whl(559.86 KB)
    pyqlib-0.5.1-cp36-cp36m-manylinux2010_x86_64.whl(559.86 KB)
    pyqlib-0.5.1-cp36-cp36m-win_amd64.whl(210.99 KB)
    pyqlib-0.5.1-cp37-cp37m-macosx_10_14_x86_64.whl(204.69 KB)
    pyqlib-0.5.1-cp37-cp37m-manylinux1_x86_64.whl(562.31 KB)
    pyqlib-0.5.1-cp37-cp37m-manylinux2010_x86_64.whl(562.32 KB)
    pyqlib-0.5.1-cp37-cp37m-win_amd64.whl(210.77 KB)
    pyqlib-0.5.1-cp38-cp38-macosx_10_14_x86_64.whl(205.47 KB)
    pyqlib-0.5.1-cp38-cp38-manylinux1_x86_64.whl(598.61 KB)
    pyqlib-0.5.1-cp38-cp38-manylinux2010_x86_64.whl(598.62 KB)
    pyqlib-0.5.1-cp38-cp38-win_amd64.whl(212.47 KB)
  • v0.5.0(Sep 24, 2020)

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies.

    Source code(tar.gz)
    Source code(zip)
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

๐ŸŽฎ Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (เค‹เคทเคฟเค•เฅ‡เคถ) 103 Nov 25, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022