Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Overview

Panoramic BlitzNet

Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Introduction

This repository contains an original implementation of the paper: 'What’s in my Room? Object Recognition on Indoor Panoramic Images' by Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric Demonceaux and José J. Guerrero. More info can be found in our project page

Our implementation is based on the previous work of Dvornik et al. BlitzNet which code can be found in their webpage

Use Instructions

We recommend the use of a virtual enviroment for the use of this project. (e.g. anaconda)

$ conda new -n envname python=3.8.5 # replace envname with your prefered name

Install Requirements

1. This code has been compiled and tested using:

  • python 3.8.5
  • cuda 10.1
  • cuDNN 7.6
  • TensorFlow 2.3

You are free to try different configurations but we do not ensure it had been tested.

2. Install python requirements:

(envname)$ pip install -r requirements.txt

Download Dataset

SUN360: download

Copy the folder 'dataset' to the folder where you have the repository files.

Download Model

download

Download the folder 'Checkpoints' which includes the model weights and copy it to the folder where you have the repository files.

Test run

Ensure the folders 'dataset' and 'Checkpoints' are in the same folder than the python files.

To run our demo please run:

(envname)$ python3 test.py PanoBlitznet # Runs the test examples and saves results in 'Results' folder

Training and evaluation

If you want to train the model changing some parameters and evaluate the results follow the next steps:

1. Create a TFDS from SUN360:

Do this ONLY if it is the first time using this repository.

Ensure the folder 'dataset' is in the same folder than the python files.

Change the line 86 in sun360.py file with your path to the 'dataset' folder.

(envname)$ cd /path/to/project/folder
(envname)$ tfds build sun360.py # Creates a TFDS (Tensorflow Datasets) from SUN360

2. Train a model:

To train a model change the parameters you want in the config.py file. You are free to try different configurations but we do not ensure it had been tested.

Usage: training_loop.py 
    
    
      [--restore_ckpt]

Options:
	-h --help  Show this screen.
	--restore_ckpt  Restore weights from previous training to continue with the training.

    
   
(envname)$ python3 training_loop.py Example 10

If you want to load a model to train from it (or continue a training) run:

(envname)$ python3 training_loop.py Example 10 --restore_ckpt

Ensure to change in training_loop.py file how the learning rate changes during training to continue your training in a properly way.

3. Evaluate a model:

Loads a saved model and evaluates it.

(envname)$ python3 evaluation.py Example # Calculates mAP, mIoU, Precision and Recall and saves results in 'Results' folder

Contact

License

This software is under GNU General Public License Version 3 (GPLv3), please see GNU License

For commercial purposes, please contact the authors.

Disclaimer

This site and the code provided here are under active development. Even though we try to only release working high quality code, this version might still contain some issues. Please use it with caution.

Owner
Alejandro de Nova Guerrero
Alejandro de Nova Guerrero
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023