DecoupledNet is semantic segmentation system which using heterogeneous annotations

Overview

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTECH

Acknowledgements: Thanks to Yangqing Jia and the BVLC team for creating Caffe.

Introduction

DecoupledNet is semantic segmentation system which using heterogeneous annotations. Based on pre-trained classification network, DecoupledNet fine-tune the segmentation network with very small amount of segmentation annotations and obtains excellent results on semantic segmentation task.

Detailed description of the system will be provided by our technical report [arXiv tech report] http://arxiv.org/abs/1506.04924

Citation

If you're using this code in a publication, please cite our papers.

@article{hong2015decoupled,
  title={Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation},
  author={Hong, Seunghoon and Noh, Hyeonwoo and Han, Bohyung},
  journal={arXiv preprint arXiv:1506.04924},
  year={2015}
}

Pre-trained Model

If you need model definition and pre-trained model only, you can download them from following location: 0. caffe for DecoupledNet: https://github.com/HyeonwooNoh/caffe 0. DecoupledNet [Full annotation] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_Full_anno/DecoupledNet_Full_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_Full_anno/DecoupledNet_Full_anno_inference.caffemodel) 0. DecoupledNet [25 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_25_anno/DecoupledNet_25_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_25_anno/DecoupledNet_25_anno_inference.caffemodel) 0. DecoupledNet [10 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_10_anno/DecoupledNet_10_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_10_anno/DecoupledNet_10_anno_inference.caffemodel) 0. DecoupledNet [5 annotations] : 0. [prototxt] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_5_anno/DecoupledNet_5_anno_inference_deploy.prototxt) 0. [caffemodel] (http://cvlab.postech.ac.kr/research/decouplednet/model/DecoupledNet_5_anno/DecoupledNet_5_anno_inference.caffemodel)

Licence

This software is being made available for research purpose only. Check LICENSE file for details.

System Requirements

This software is tested on Ubuntu 14.04 LTS (64bit).

Prerequisites 0. MATLAB (tested with 2014b on 64-bit Linux) 0. prerequisites for caffe(http://caffe.berkeleyvision.org/installation.html#prequequisites)

Installing DecoupledNet

By running "setup.sh" you can download all the necessary file for training and inference including: 0. caffe: you need modified version of caffe which support DeconvNet - https://github.com/HyeonwooNoh/caffe.git 0. data: data used for training 0. model: caffemodel of trained DecoupledNet and caffemodel of pre-trained classification network

Training DecoupledNet

Training scripts are included in ./training/ directory

To train DecoupledNet with various setting, you can run following scripts 0. 001_convert_classification_network_to_fp_bp_network.sh: * converting classification network to make forward-backward propagation possible (this converted model is prerequisite for DecoupledNet training) 0. 002_train_seg_Full_anno.sh: * training DecoupledNet with full segmentation annotations 0. 003_train_seg_25_anno.sh: * training DecoupledNet with 25 segmentation annotations per class 0. 004_train_seg_10_anno.sh: * training DecoupledNet with 10 segmentation annotations per class 0. 005_train_seg_5_anno.sh: * training DecoupledNet with 5 segmentation annotations per class

DecoupledNet Inference

Inference scripts are included in ./inference/ directory.

Run run_demo.m to run DecoupledNet on VOC2012 test data.

run_demo.m script will run DecoupledNet trained in various settings (Full, 25, 10, 5 annotations): 0. DecoupledNet-Full (66.6 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-25 (62.5 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-10 (58.7 mean I/U on PASCAL VOC 2012 Test) 0. DecoupledNet-5 (54.7 mean I/U on PASCAL VOC 2012 Test)

Owner
Hyeonwoo Noh
Hyeonwoo Noh
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
3 Apr 20, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022