Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Overview

Cascaded-FCN

This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of axial CT images and a python wrapper for dense 3D Conditional Random Fields 3D CRFs.

This work was published in MICCAI 2016 paper (arXiv link) titled :

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional 
Neural Networks and 3D Conditional Random Fields

Caffe

Quick Start

If you want to use our code we offer an docker image, which runs our code and has all dependencies installed including the correct caffe version. After having installed docker and nvidia docker:

sudo GPU=0 nvidia-docker run -v $(pwd):/data -P --net=host --workdir=/Cascaded-FCN -ti --privileged patrickchrist/cascadedfcn bash

And than start jupyter notebook and browse to localhost:8888

jupyter notebook

Tensorflow

Please look at Readme and Documentation at https://github.com/FelixGruen/tensorflow-u-net

Citation

If you have used these models in your research please use the following BibTeX for citation :

@Inbook{Christ2016,
title="Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields",
author="Christ, Patrick Ferdinand and Elshaer, Mohamed Ezzeldin A. and Ettlinger, Florian and Tatavarty, Sunil and Bickel, Marc and Bilic, Patrick and Rempfler, Markus and Armbruster, Marco and Hofmann, Felix and D'Anastasi, Melvin and Sommer, Wieland H. and Ahmadi, Seyed-Ahmad and Menze, Bjoern H.",
editor="Ourselin, Sebastien and Joskowicz, Leo and Sabuncu, Mert R. and Unal, Gozde and Wells, William",
bookTitle="Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II",
year="2016",
publisher="Springer International Publishing",
address="Cham",
pages="415--423",
isbn="978-3-319-46723-8",
doi="10.1007/978-3-319-46723-8_48",
url="http://dx.doi.org/10.1007/978-3-319-46723-8_48"
}
@ARTICLE{2017arXiv170205970C,
   author = {{Christ}, P.~F. and {Ettlinger}, F. and {Gr{\"u}n}, F. and {Elshaera}, M.~E.~A. and 
	{Lipkova}, J. and {Schlecht}, S. and {Ahmaddy}, F. and {Tatavarty}, S. and 
	{Bickel}, M. and {Bilic}, P. and {Rempfler}, M. and {Hofmann}, F. and 
	{Anastasi}, M.~D and {Ahmadi}, S.-A. and {Kaissis}, G. and {Holch}, J. and 
	{Sommer}, W. and {Braren}, R. and {Heinemann}, V. and {Menze}, B.},
    title = "{Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1702.05970},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence},
     year = 2017,
}
@inproceedings{Christ2017SurvivalNetPP,
  title={SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks},
  author={Patrick Ferdinand Christ and Florian Ettlinger and Georgios Kaissis and Sebastian Schlecht and Freba Ahmaddy and Felix Gr{\"{u}n and Alexander Valentinitsch and Seyed-Ahmad Ahmadi and Rickmer Braren and Bjoern H. Menze},
  booktitle={ISBI},
  year={2017}
}

Description

This work uses 2 cascaded UNETs,

  1. In step1, a UNET segments the liver from an axial abdominal CT slice. The segmentation output is a binary mask with bright pixels denoting the segmented object. By segmenting all slices in a volume we obtain a 3D segmentation.
  2. (Optional) We enhance the liver segmentation using 3D dense CRF (conditional random field). The resulting enhanced liver segmentation is then used further for step2.
  3. In step2 another UNET takes an enlarged liver slice and segments its lesions.

The input to both networks is 572x572 generated by applying reflection mirroring at all 4 sides of a 388x388 slice. The boundary 92 pixels are reflecting, resulting in (92+388+92)x(92+388+92) = 572x572.

An illustration of the pipeline is shown below :

Illustration of the CascadedFCN pipeline

For detailed Information have a look in our presentation

3D Conditional Random Field 3DCRF

You can find the 3D CRF at 3DCRF-python. Please follow the installation description in the Readme.

License

These models are published with unrestricted use for research and educational purposes. For commercial use, please refer to the paper authors.

Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Matthew Colbrook 1 Apr 08, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023