Model that predicts the probability of a Twitter user being anti-vaccination.

Overview
<style>body {text-align: justify}</style>

AVAXTAR: Anti-VAXx Tweet AnalyzeR

AVAXTAR is a python package to identify anti-vaccine users on twitter. The model outputs complimentary probabilities for [not anti-vaccine, anti-vaccine]. AVAXTAR was trained on 100GB of autolabeled twitter data.

The model supports both Twitter API v1 and v2. To predict with v1, the user needs its consumer key, consumer secret, access token and access secret. The v2 requires only a bearer token, but it can only predict based on user id, not on screen name. Predicting from the v2 api using screen name is only possible if v1 keys are passed to the model.

The methodology behind the package is described in full at {placeholder}

Citation

To cite this paper, please use: {placeholder}

Installation

Attention: this package relies on a pre-trained embedding model from sent2vec, with a size of 5 GB. The model will be automatically downloaded when the package is first instanced on a python script, and will then be saved on the package directory for future usage.

  1. Clone this repo:
git clone https://github.com/Matheus-Schmitz/avaxtar.git
  1. Go to the repo's root:
cd avaxtar/
  1. Install with pip:
pip install .

Usage Example

For prediction, use:

model.predict_from_userid_api_v1(userid)

and:

model.predict_from_userid_api_v2(userid)

For example:

from avaxtar import Avaxtar

consumer_key = ''
consumer_secret = ''
access_token = ''
access_secret = ''
bearer_token = ''


if __name__ == "__main__":

	# Get the userid
	userid = ''

	# Predict
	model = Avaxtar.AvaxModel(consumer_key, consumer_secret, access_token, access_secret, bearer_token)
	pred_proba = model.predict_from_userid_api_v1(userid)

	# Results
	print(f'User: {userid}')
	print(f'Class Probabilities: {pred_proba}')

Package Details

The AVAXTAR classifier is trained on a comprehensive labeled dataset that contains historical tweets of approximately 130K Twitter accounts. Each account from the dataset was assigned one out of two labels: positive for the accounts that actively spread anti-vaccination narrative \~70K and negative for the accounts that do not spread anti vaccination narrative \~60K.

Collecting positive samples: Positive samples are gathered through a snowball method to identify a set of hashtags and keywords associated with the anti-vaccination movement, and then queried the Twitter API and collected the historical tweets of accounts that used any of the identified keywords.

Collecting negative samples: To collect the negative samples, we first performed a mirror approach the positive samples and queried the Twitter API to get historical tweets of accounts that do not use any of the predefined keywords and hashtags. We then enlarge the number of negative samples, by gathering the tweets from accounts that are likely proponents of the vaccination. We identify the pro-ponents of the vaccines in the following way: First, we identify the set of twenty most prominent doctors and health experts active on Twitter. Then collected the covid-related Lists those health experts made on Twitter. From those lists, we collected approximately one thousand Twitter handles of prominent experts and doctors who tweet about the coronavirus and the pandemic. In the next step, we go through their latest 200 tweets and collected the Twitter handles of users who retweeted their tweets. That became our pool of pro-vaccine users. Finally, we collected the historical tweets of users from the pro-vaccine pool.

After model training, we identify the optimal classification threshold to be used, based on maximizing F1 score on the validation set. We find that a threshold of 0.5938 results in the best F1 Score, and thus recommend the usage of that threshold instead of the default threshold of 0.5. Using the optimized threshold, the resulting modelwas then evaluated on a test set of users, achieving the reasonable scores, as shown in the table below.

Metric Negative Class Positive Class
Accuracy 0.8680 0.8680
ROC-AUC 0.9270 0.9270
PRC-AUC 0.8427 0.9677
Precision 0.8675 0.8675
Recall 0.8680 0.8680
F1 0.8677 0.8678
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022