KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

Overview

KDD CUP 2020: AutoGraph

Team: aister


  • Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei
  • Team Introduction: Most of our members come from the Search Ads Algorithm Team of the Meituan Dianping Advertising Platform Department. We participated in three of the five competitions held by KDD CUP 2020 and achieved promising results. We won first place in Debiasing(1/1895), first place in AutoGraph(1/149), and third place in Multimodalities Recall(3/1433).
  • Based on the business scenario of Meituan and Dianping App, the Search Ads Algorithm Team of Meituan Dianping has rich expertise in innovation and algorithm optimization in the field of cutting-edge technology, including but not limited to, conducting algorithm research and application in the fileds of Debiasing, Graph Learning and Multimodalities.
  • If you are interested in our team or would like to communicate with our team(b.t.w., we are hiring), you can email to [email protected].

Introduction


  • The competition inviting participants deploy AutoML solutions for graph representation learning, where node classification is chosen as the task to evaluate the quality of learned representations. There are 15 graph datasets which consists of five public datasets to develop AutoML solutions, five feedback datasets to evaluate solutions and other five unseen datasets for the final rankings. Each dataset contains the index value of the node, the processed characteristic value, and the weight of the directed edge. We proposed automatic solutions that can effectively and efficiently learn high-quality representation for each node based on the given features, neighborhood and structural information underlying the graph. Please refer to the competition official website for more details: https://www.automl.ai/competitions/3

Preprocess


  • Feature
    • The size of node degree can obviously represent the importance of node, but the information of node degree with too much value is easy to overfit. So we bucket the node degree.
    • Node index embedding
    • The multi-hop neighbor information of the node.

Model Architecture


  • Automatic proxy evaluation is a better method to select proper models for a new dataset. However, the extremely limited time budget does not allow online model selection. For a trade-off of accuracy and speed, we offline evaluate many models and empirically find that GCN, GAT, GraphSAGE, and TAGConv can get robust and good results on the 5 public dataset and 5 feedback datasets. Thus we use them for ensemble in this code. One can get better results using proxy evaluation.
  • We design different network structures for directed graph and undirected graph, sparse graph and dense graph, graph with node features and graph without node features.

Training Procedure


  • Search learning rate
    • lr_list = [0.05, 0.03, 0.01, 0.0075, 0.005, 0.003, 0.001, 0.0005]
    • Select the optimal learning rate of each model in this data set. After 16 rounds of training, choose the learning rate which get lowest loss(average of epoch 14th, 15th and 16th) in the model.
  • Estimate running time
    • By running the model, estimating the model initialization time and training time for each epoch.
    • The model training epochs are determined according to remaining time and running time of the model.
  • Training and validation
    • The difference of training epochs will lead to the big difference of model effect. It is very easy to overfit for the graph with only node ID information and no original features. So we adopt cross validation and early stopping, which makes the model more robust.
    • training with the following parameters:
      • Learning rate = best_lr
      • Loss: NLL Loss
      • Optimizer: Adam

Reproducibility


  • Requirement
    • Python==3.6
    • torch==1.4.0
    • torch-geometric==1.3.2
    • numpy==1.18.1
    • pandas==1.0.1
    • scikit-learn==0.19.1
  • Training
    • Run ingestion.py.

Reference


[1] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[2] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
[3] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[C]//Advances in neural information processing systems. 2017: 1024-1034.
[4] Du J, Zhang S, Wu G, et al. Topology adaptive graph convolutional networks[J]. arXiv preprint arXiv:1710.10370, 2017.

Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023