[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

Overview

MixFormer

The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention

PWC

PWC

[Models and Raw results] (Google Driver) [Models and Raw results] (Baidu Driver: hmuv)

MixFormer_Framework

News

[Mar 21, 2022]

  • MixFormer is accepted to CVPR2022.
  • We release Code, models and raw results.

[Mar 29, 2022]

  • Our paper is selected for an oral presentation.

Highlights

New transformer tracking framework

MixFormer is composed of a target-search mixed attention (MAM) based backbone and a simple corner head, yielding a compact tracking pipeline without an explicit integration module.

End-to-end, Positional-embedding-free, multi-feature-aggregation-free

Mixformer is an end-to-end tracking framework without post-processing. Compared with other transformer trackers, MixFormer doesn's use positional embedding, attentional mask and multi-layer feature aggregation strategy.

Strong performance

Tracker VOT2020 (EAO) LaSOT (NP) GOT-10K (AO) TrackingNet (NP)
MixFormer 0.555 79.9 70.7 88.9
ToMP101* (CVPR2022) - 79.2 - 86.4
SBT-large* (CVPR2022) 0.529 - 70.4 -
SwinTrack* (Arxiv2021) - 78.6 69.4 88.2
Sim-L/14* (Arxiv2022) - 79.7 69.8 87.4
STARK (ICCV2021) 0.505 77.0 68.8 86.9
KeepTrack (ICCV2021) - 77.2 - -
TransT (CVPR2021) 0.495 73.8 67.1 86.7
TrDiMP (CVPR2021) - - 67.1 83.3
Siam R-CNN (CVPR2020) - 72.2 64.9 85.4
TREG (Arxiv2021) - 74.1 66.8 83.8

Install the environment

Use the Anaconda

conda create -n mixformer python=3.6
conda activate mixformer
bash install_pytorch17.sh

Data Preparation

Put the tracking datasets in ./data. It should look like:

${MixFormer_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- train2017
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Set project paths

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train MixFormer

Training with multiple GPUs using DDP. More details of other training settings can be found at tracking/train_mixformer.sh

# MixFormer
bash tracking/train_mixformer.sh

Test and evaluate MixFormer on benchmarks

  • LaSOT/GOT10k-test/TrackingNet/OTB100/UAV123. More details of test settings can be found at tracking/test_mixformer.sh
bash tracking/test_mixformer.sh
  • VOT2020
    Before evaluating "MixFormer+AR" on VOT2020, please install some extra packages following external/AR/README.md. Also, the VOT toolkit is required to evaluate our tracker. To download and instal VOT toolkit, you can follow this tutorial. For convenience, you can use our example workspaces of VOT toolkit under external/vot20/ by setting trackers.ini.
cd external/vot20/<workspace_dir>
vot evaluate --workspace . MixFormerPython
# generating analysis results
vot analysis --workspace . --nocache

Run MixFormer on your own video

bash tracking/run_video_demo.sh

Compute FLOPs/Params and test speed

bash tracking/profile_mixformer.sh

Visualize attention maps

bash tracking/vis_mixformer_attn.sh

vis_attn

Model Zoo and raw results

The trained models and the raw tracking results are provided in the [Models and Raw results] (Google Driver) or [Models and Raw results] (Baidu Driver: hmuv).

Contact

Yutao Cui: [email protected]

Cheng Jiang: [email protected]

Acknowledgments

  • Thanks for PyTracking Library and STARK Library, which helps us to quickly implement our ideas.
  • We use the implementation of the CvT from the official repo CvT.
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022