【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

Overview

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021)

1

Overview

We release the code of the DSANet (Dynamic Segment Aggregation Network). We introduce the DSA module to capture relationship among snippets for video-level representation learning. Equipped with DSA modules, the top-1 accuracy of I3D ResNet-50 is improved to 78.2% on Kinetics-400.

The core code to implement the Dynamic Segment Aggregation Module is codes/models/modules_maker/DSA.py.

[July 7, 2021] We release the core code of DSANet.

[July 3, 2021] DSANet has been accepted by ACMMM 2021.

Prerequisites

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.5. Other versions should work but are not tested.

Download Pretrained Models

  • Download ImageNet pre-trained models for offline environment
cd pretrained
sh download_imgnet.sh
  • Download K400 pre-trained models for inference

TODO

Data Preparation

We follow the same data process with MVFNet for data preparation.

Model Zoo

TODO

Testing

bash dist_test_recognizer.sh CONFIG_PATH CHECKPOINT_PATH 8 

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train DSANet with 8 gpus, you can run:
bash dist_train_recognizer.sh configs/kinetics/r50_e100.py 8

Acknowledgements

We especially thank the contributors of the MVFNet and mmaction codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Related Work

MVFNet: Multi-View Fusion Network for Efficient Video Recognition, AAAI2021 Paper | Code

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@inproceedings{wu2021dsanet,
  title={DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning},
  author={Wu, Wenhao and Zhao, Yuxiang and Xu, Yanwu and Tan, Xiao and He, Dongliang and Zou, Zhikang and Ye, Jin and Li, Yingying and Yao, Mingde and Dong, Zichao and others},
  booktitle = {ACMMM},
  year={2021}
}

Contact

For any question, please file an issue or contact

Wenhao Wu: [email protected]
Yuxiang Zhao: [email protected]
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022