Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Related tags

Deep LearningJCW
Overview

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

motivation

Abstract

For practical deep neural network design on mobile devices, it is essential to consider the constraints incurred by the computational resources and the inference latency in various applications. Among deep network acceleration related approaches, pruning is a widely adopted practice to balance the computational resource consumption and the accuracy, where unimportant connections can be removed either channel-wisely or randomly with a minimal impact on model accuracy. The channel pruning instantly results in a significant latency reduction, while the random weight pruning is more flexible to balance the latency and accuracy. In this paper, we present a unified framework with Joint Channel pruning and Weight pruning (JCW), and achieves a better Pareto-frontier between the latency and accuracy than previous model compression approaches. To fully optimize the trade-off between the latency and accuracy, we develop a tailored multi-objective evolutionary algorithm in the JCW framework, which enables one single search to obtain the optimal candidate architectures for various deployment requirements. Extensive experiments demonstrate that the JCW achieves a better trade-off between the latency and accuracy against various state-of-the-art pruning methods on the ImageNet classification dataset.

Framework

framework

Evaluation

Resnet18

Method Latency/ms Accuracy
Uniform 1x 537 69.8
DMCP 341 69.7
APS 363 70.3
JCW 160 69.2
194 69.7
196 69.9
224 70.2

MobileNetV1

Method Latency/ms Accuracy
Uniform 1x 167 70.9
Uniform 0.75x 102 68.4
Uniform 0.5x 53 64.4
AMC 94 70.7
Fast 61 68.4
AutoSlim 99 71.5
AutoSlim 55 67.9
USNet 102 69.5
USNet 53 64.2
JCW 31 69.1
39 69.9
43 69.8
54 70.3
69 71.4

MobileNetV2

Method Latency/ms Accuracy
Uniform 1x 114 71.8
Uniform 0.75x 71 69.8
Uniform 0.5x 41 65.4
APS 110 72.8
APS 64 69.0
DMCP 83 72.4
DMCP 45 67.0
DMCP 43 66.1
Fast 89 72.0
Fast 62 70.2
JCW 30 69.1
40 69.9
44 70.8
59 72.2

Requirements

  • torch
  • torchvision
  • numpy
  • scipy

Usage

The JCW works in a two-step fashion. i.e. the search step and the training step. The search step seaches for the layer-wise channel numbers and weight sparsity for Pareto-optimal models. The training steps trains the searched models with ADMM. We give a simple example for resnet18.

The search step

  1. Modify the configuration file

    First, open the file experiments/res18-search.yaml:

    vim experiments/res18-search.yaml

    Go to the 44th line and find the following codes:

    DATASET:
      data: ImageNet
      root: /path/to/imagenet
      ...
    

    and modify the root property of DATASET to the path of ImageNet dataset on your machine.

  2. Apply the search

    After modifying the configuration file, you can simply start the search by:

    python emo_search.py --config experiments/res18-search.yaml | tee experiments/res18-search.log

    After searching, the search results will be saved in experiments/search.pth

The training step

After searching, we can train the searched models by:

  1. Modify the base configuration file

    Open the file experiments/res18-train.yaml:

    vim experiments/res18-train.yaml

    Go to the 5th line, find the following codes:

    root: &root /path/to/imagenet
    

    and modify the root property to the path of ImageNet dataset on your machine.

  2. Generate configuration files for training

    After modifying the base configuration file, we are ready to generate the configuration files for training. To do that, simply run the following command:

    python scripts/generate_training_configs.py --base-config experiments/res18-train.yaml --search-result experiments/search.pth --output ./train-configs 

    After running the above command, the training configuration files will be written into ./train-configs/model-{id}/train.yaml.

  3. Apply the training

    After generating the configuration files, simply run the following command to train one certain model:

    python train.py --config xxxx/xxx/train.yaml | tee xxx/xxx/train.log
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022