The 2nd place solution of 2021 google landmark retrieval on kaggle.

Overview

Google_Landmark_Retrieval_2021_2nd_Place_Solution

The 2nd place solution of 2021 google landmark retrieval on kaggle.

Environment

We use cuda 11.1/python 3.7/torch 1.9.1/torchvision 0.8.1 for training and testing.

Download imagenet pretrained model ResNeXt101ibn and SEResNet101ibn from IBN-Net. ResNest101 and ResNeSt269 can be found in ResNest.

Prepare data

  1. Download GLDv2 full version from the official site.

  2. Run python tools/generate_gld_list.py. This will generate clean, c2x, trainfull and all data for different stage of training.

  3. Validation annotation comes from all 1129 images in GLDv2. We expand the competition index set to index_expand. Each query could find all its GTs in the expanded index set and the validation could be more accurate.

Train

We use 8 GPU (32GB/16GB) for training. The evaluation metric in landmark retrieval is different from person re-identification. Due to the validation scale, we skip the validation stage during training and just use the model from last epoch for evaluation.

Fast Train Script

To make quick experiments, we provide scripts for R50_256 trained for clean subset. This setting trains very fast and is helpful for debug.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml

Whole Train Pipeline

The whole training pipeline for SER101ibn backbone is listed below. Other backbones and input size can be modified accordingly.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml

Inference(notebooks)

  • With four models trained, cd to submission/code/ and modify settings in landmark_retrieval.py properly.

  • Then run eval_retrieval.sh to get submission file and evaluate on validation set offline.

General Settings

REID_EXTRACT_FLAG: Skip feature extraction when using offline code.
FEAT_DIR: Save cached features.
IMAGE_DIR: competition image dir. We make a soft link for competition data at submission/input/landmark-retrieval-2021/
RAW_IMAGE_DIR: origin GLDv2 dir
MODEL_DIR: the latest models for submission
META_DIR: saves meta files for rerank purpose
LOCAL_MATCHING and KR_FLAG disabled for our submission.

Fast Inference Script

Use R50_256 model trained from clean subset correspongding to the fast train script. Set CATEGORY_RERANK and REF_SET_EXTRACT to False. You will get about mAP=32.84% for the validation set.

Whole Inference Pipeline

  • Copy cache_all_list.pkl, cache_index_train_list.pkl and cache_full_list.pkl from cache to submission/input/meta-data-final

  • Set REF_SET_EXTRACT to True to extract features for all images of GLDv2. This will save about 4.9 million 512 dim features for each model in submission/input/meta-data-final.

  • Set REF_SET_EXTRACT to False and CATEGORY_RERANK to before_merge. This will load the precomputed features and run the proposed Landmark-Country aware rerank.

  • The notebooks on kaggle is exactly the same file as in base_landmark.py and landmark_retrieval.py. We also upload the same notebooks as in kaggle in kaggle.ipynb.

Kaggle and ICCV workshops

  • The challenge is held on kaggle and the leaderboard can be found here. We rank 2nd(2/263) in this challenge.

  • Kaggle Discussion post link here

  • ICCV workshop slides coming soon.

Thanks

The code is motivated by AICITY2021_Track2_DMT, 2020_1st_recognition_solution, 2020_2nd_recognition_solution, 2020_1st_retrieval_solution.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{zhang2021landmark,
 title={2nd Place Solution to Google Landmark Retrieval 2021},
 author={Zhang, Yuqi and Xu, Xianzhe and Chen, Weihua and Wang, Yaohua and Zhang, Fangyi},
 year={2021}
}
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022