This repository implements WGAN_GP.

Overview

Image_WGAN_GP

This repository implements WGAN_GP.

Image_WGAN_GP

This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you can download the datasets from main.py .

requirements

Before you run the code, you should install following packages for your environment.

You can see it in the requirements.txt.

install

pip install -r requirements.txt

torch>=0.4.0
torchvision
matplotlib
numpy
scipy
pillow
urllib3
scikit-image

Prepare the dataset

Before you run the code, you should prepare the dataset. You must replace the ROOT_PATH in main.py with your own path.

ROOT_PATH = '../..' # for linux
ROOT_PATH = 'D:/code/Image_WGAN_GP'  # for windows and change it into your work directory!

We provide the mnist , fashionmnist and cifar10 datasets. But you can download others , when you run the code. For example , download the cifar100, just add the following code in main.py and you should modify the models(We will finish it later).

opt.dataset == 'cifar100':
    os.makedirs(ROOT_PATH + "/data/cifar100", exist_ok=True)
    dataloader = torch.utils.data.DataLoader(
        datasets.CIFAR100(
            ROOT_PATH + "/data/cifar100",
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
            ),
        ),
        batch_size=opt.batch_size,
        shuffle=True,
    )

The data will be saved in data directory.

Training

Using mnist dataset.

python main.py -data 'mnist' -n_epochs 300

Using fashionmnist dataset.

python main.py -data 'fashionmnist' -n_epochs 300

The generated images will be saved in images directory.

Training parameters

You can see details in config.py

"--n_epochs", "number of epochs of training"

"--batch_size", "size of the batches"

"--lr","adam: learning rate"

"--b1","adam: decay of first order momentum of gradient"

"--b2", "adam: decay of first order momentum of gradient"

"--n_cpu", "number of cpu threads to use during batch generation"

"--latent_dim", "dimensionality of the latent space"

"--img_size", "size of each image dimension"

"--channels","number of image channels"

"--n_critic", "number of training steps for discriminator per iter"

"--clip_value","lower and upper clip value for disc. weights"

"--sample_interval", "interval betwen image samples"

'--exp_name', 'output folder name; will be automatically generated if not specified'

'--pretrain_iterations', 'iterations for pre-training'

'--pretrain', 'if performing pre-training'

'--dataset', '-data', choices=['mnist', 'fashionmnist', 'cifar10']

Save params

The parameters will be save in results. And you can change the saving directory name in config.py

Wasserstein GAN GP

Improved Training of Wasserstein GANs

Authors

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville

Abstract

Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

[Paper]

wgan_gp

Owner
Lieon
Deep learning, Anomaly detection,Time series, Generative Adversarial Networks.
Lieon
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021