[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

Overview

NerfingMVS

Project Page | Paper | Video | Data


NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, Jie Zhou
ICCV 2021 (Oral Presentation)

Installation

  • Pull NerfingMVS repo.
    git clone --recursive [email protected]:weiyithu/NerfingMVS.git
    
  • Install python packages with anaconda.
    conda create -n NerfingMVS python=3.7
    conda activate NerfingMVS
    conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch
    pip install -r requirements.txt
    
  • We use COLMAP to calculate poses and sparse depths. However, original COLMAP does not have fusion mask for each view. Thus, we add masks to COLMAP and denote it as a submodule. Please follow https://colmap.github.io/install.html to install COLMAP in ./colmap folder.

Usage

  • Download 8 ScanNet scene data used in the paper here and put them under ./data folder. We also upload final results and checkpoints of each scene here.
  • Run NerfingMVS
    sh run.sh $scene_name
    
    The whole procedure takes about 3.5 hours on one NVIDIA GeForce RTX 2080 GPU, including COLMAP, depth priors training, NeRF training, filtering and evaluation. COLMAP can be accelerated with multiple GPUs.You will get per-view depth maps in ./logs/$scene_name/filter. Note that these depth maps have been aligned with COLMAP poses. COLMAP results will be saved in ./data/$scene_name while others will be preserved in ./logs/$scene_name

Run on Your Own Data!

  • Place your data with the following structure:
    NerfingMVS
    |───data
    |    |──────$scene_name
    |    |   |   train.txt
    |    |   |──────images
    |    |   |    |    001.jpg
    |    |   |    |    002.jpg
    |    |   |    |    ...
    |───configs
    |    $scene_name.txt
    |     ...
    
    train.txt contains names of all the images. Images can be renamed arbitrarily and '001.jpg' is just an example. You also need to imitate ScanNet scenes to create a config file in ./configs. Note that factor parameter controls the resolution of output depth maps. You also should adjust depth_N_iters, depth_H, depth_W in options.py accordingly.
  • Run NerfingMVS without evaluation
    sh demo.sh $scene_name
    
    Since our work currently relies on COLMAP, the results are dependent on the quality of the acquired poses and sparse reconstruction from COLMAP.

Acknowledgement

Our code is based on the pytorch implementation of NeRF: NeRF-pytorch. We also refer to mannequin challenge.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{wei2021nerfingmvs,
  author    = {Wei, Yi and Liu, Shaohui and Rao, Yongming and Zhao, Wang and Lu, Jiwen and Zhou, Jie},
  title     = {NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo},
  booktitle = {ICCV},
  year = {2021}
}
Owner
Yi Wei
Yi Wei
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022