LAnguage Model Analysis

Related tags

Deep LearningLAMA
Overview

LAMA: LAnguage Model Analysis

LAMA

LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models.

The dataset for the LAMA probe is available at https://dl.fbaipublicfiles.com/LAMA/data.zip

LAMA contains a set of connectors to pretrained language models.
LAMA exposes a transparent and unique interface to use:

  • Transformer-XL (Dai et al., 2019)
  • BERT (Devlin et al., 2018)
  • ELMo (Peters et al., 2018)
  • GPT (Radford et al., 2018)
  • RoBERTa (Liu et al., 2019)

Actually, LAMA is also a beautiful animal.

Reference:

The LAMA probe is described in the following papers:

@inproceedings{petroni2019language,
  title={Language Models as Knowledge Bases?},
  author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
  booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
  year={2019}
}

@inproceedings{petroni2020how,
  title={How Context Affects Language Models' Factual Predictions},
  author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
  booktitle={Automated Knowledge Base Construction},
  year={2020},
  url={https://openreview.net/forum?id=025X0zPfn}
}

The LAMA probe

To reproduce our results:

1. Create conda environment and install requirements

(optional) It might be a good idea to use a separate conda environment. It can be created by running:

conda create -n lama37 -y python=3.7 && conda activate lama37
pip install -r requirements.txt

2. Download the data

wget https://dl.fbaipublicfiles.com/LAMA/data.zip
unzip data.zip
rm data.zip

3. Download the models

DISCLAIMER: ~55 GB on disk

Install spacy model

python3 -m spacy download en

Download the models

chmod +x download_models.sh
./download_models.sh

The script will create and populate a pre-trained_language_models folder. If you are interested in a particular model please edit the script.

4. Run the experiments

python scripts/run_experiments.py

results will be logged in output/ and last_results.csv.

Other versions of LAMA

LAMA-UHN

This repository also provides a script (scripts/create_lama_uhn.py) to create the data used in (Poerner et al., 2019).

Negated-LAMA

This repository also gives the option to evalute how pretrained language models handle negated probes (Kassner et al., 2019), set the flag use_negated_probes in scripts/run_experiments.py. Also, you should use this version of the LAMA probe https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz

What else can you do with LAMA?

1. Encode a list of sentences

and use the vectors in your downstream task!

pip install -e git+https://github.com/facebookresearch/LAMA#egg=LAMA
import argparse
from lama.build_encoded_dataset import encode, load_encoded_dataset

PARAMETERS= {
        "lm": "bert",
        "bert_model_name": "bert-large-cased",
        "bert_model_dir":
        "pre-trained_language_models/bert/cased_L-24_H-1024_A-16",
        "bert_vocab_name": "vocab.txt",
        "batch_size": 32
        }

args = argparse.Namespace(**PARAMETERS)

sentences = [
        ["The cat is on the table ."],  # single-sentence instance
        ["The dog is sleeping on the sofa .", "He makes happy noises ."],  # two-sentence
        ]

encoded_dataset = encode(args, sentences)
print("Embedding shape: %s" % str(encoded_dataset[0].embedding.shape))
print("Tokens: %r" % encoded_dataset[0].tokens)

# save on disk the encoded dataset
encoded_dataset.save("test.pkl")

# load from disk the encoded dataset
new_encoded_dataset = load_encoded_dataset("test.pkl")
print("Embedding shape: %s" % str(new_encoded_dataset[0].embedding.shape))
print("Tokens: %r" % new_encoded_dataset[0].tokens)

2. Fill a sentence with a gap.

You should use the symbol [MASK] to specify the gap. Only single-token gap supported - i.e., a single [MASK].

python lama/eval_generation.py  \
--lm "bert"  \
--t "The cat is on the [MASK]."

cat_on_the_phone

cat_on_the_phone

source: https://commons.wikimedia.org/wiki/File:Bluebell_on_the_phone.jpg

Note that you could use this functionality to answer cloze-style questions, such as:

python lama/eval_generation.py  \
--lm "bert"  \
--t "The theory of relativity was developed by [MASK] ."

Install LAMA with pip

Clone the repo

git clone [email protected]:facebookresearch/LAMA.git && cd LAMA

Install as an editable package:

pip install --editable .

If you get an error in mac os x, please try running this instead

CFLAGS="-Wno-deprecated-declarations -std=c++11 -stdlib=libc++" pip install --editable .

Language Model(s) options

Option to indicate which language model(s) to use:

  • --language-models/--lm : comma separated list of language models (REQUIRED)

BERT

BERT pretrained models can be loaded both: (i) passing the name of the model and using huggingface cached versions or (ii) passing the folder containing the vocabulary and the PyTorch pretrained model (look at convert_tf_checkpoint_to_pytorch in here to convert the TensorFlow model to PyTorch).

  • --bert-model-dir/--bmd : directory that contains the BERT pre-trained model and the vocabulary
  • --bert-model-name/--bmn : name of the huggingface cached versions of the BERT pre-trained model (default = 'bert-base-cased')
  • --bert-vocab-name/--bvn : name of vocabulary used to pre-train the BERT model (default = 'vocab.txt')

RoBERTa

  • --roberta-model-dir/--rmd : directory that contains the RoBERTa pre-trained model and the vocabulary (REQUIRED)
  • --roberta-model-name/--rmn : name of the RoBERTa pre-trained model (default = 'model.pt')
  • --roberta-vocab-name/--rvn : name of vocabulary used to pre-train the RoBERTa model (default = 'dict.txt')

ELMo

  • --elmo-model-dir/--emd : directory that contains the ELMo pre-trained model and the vocabulary (REQUIRED)
  • --elmo-model-name/--emn : name of the ELMo pre-trained model (default = 'elmo_2x4096_512_2048cnn_2xhighway')
  • --elmo-vocab-name/--evn : name of vocabulary used to pre-train the ELMo model (default = 'vocab-2016-09-10.txt')

Transformer-XL

  • --transformerxl-model-dir/--tmd : directory that contains the pre-trained model and the vocabulary (REQUIRED)
  • --transformerxl-model-name/--tmn : name of the pre-trained model (default = 'transfo-xl-wt103')

GPT

  • --gpt-model-dir/--gmd : directory that contains the gpt pre-trained model and the vocabulary (REQUIRED)
  • --gpt-model-name/--gmn : name of the gpt pre-trained model (default = 'openai-gpt')

Evaluate Language Model(s) Generation

options:

  • --text/--t : text to compute the generation for
  • --i : interactive mode
    one of the two is required

example considering both BERT and ELMo:

python lama/eval_generation.py \
--lm "bert,elmo" \
--bmd "pre-trained_language_models/bert/cased_L-24_H-1024_A-16/" \
--emd "pre-trained_language_models/elmo/original/" \
--t "The cat is on the [MASK]."

example considering only BERT with the default pre-trained model, in an interactive fashion:

python lamas/eval_generation.py  \
--lm "bert"  \
--i

Get Contextual Embeddings

python lama/get_contextual_embeddings.py \
--lm "bert,elmo" \
--bmn bert-base-cased \
--emd "pre-trained_language_models/elmo/original/"

Unified vocabulary

The intersection of the vocabularies for all considered models

Troubleshooting

If the module cannot be found, preface the python command with PYTHONPATH=.

If the experiments fail on GPU memory allocation, try reducing batch size.

Acknowledgements

Other References

  • (Kassner et al., 2019) Nora Kassner, Hinrich Schütze. Negated LAMA: Birds cannot fly. arXiv preprint arXiv:1911.03343, 2019.

  • (Poerner et al., 2019) Nina Poerner, Ulli Waltinger, and Hinrich Schütze. BERT is Not a Knowledge Base (Yet): Factual Knowledge vs. Name-Based Reasoning in Unsupervised QA. arXiv preprint arXiv:1911.03681, 2019.

  • (Dai et al., 2019) Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdi. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR, abs/1901.02860.

  • (Peters et al., 2018) Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. NAACL-HLT 2018

  • (Devlin et al., 2018) Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

  • (Radford et al., 2018) Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

  • (Liu et al., 2019) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

Licence

LAMA is licensed under the CC-BY-NC 4.0 license. The text of the license can be found here.

Owner
Meta Research
Meta Research
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022