Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Related tags

Deep LearningbigBatch
Overview

Train longer, generalize better - Big batch training

This is a code repository used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks" By Elad Hoffer, Itay Hubara and Daniel Soudry.

It is based off convNet.pytorch with some helpful options such as:

  • Training on several datasets
  • Complete logging of trained experiment
  • Graph visualization of the training/validation loss and accuracy
  • Definition of preprocessing and optimization regime for each model

Dependencies

Data

  • Configure your dataset path at data.py.
  • To get the ILSVRC data, you should register on their site for access: http://www.image-net.org/

Experiment examples

python main_normal.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_lr_fix --epochs 100 --b 2048 --lr_bb_fix;
python main_normal.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_regime_adaptation --epochs 100 --b 2048 --lr_bb_fix --regime_bb_fix;
python main_gbn.py --dataset cifar10 --model resnet --save cifar10_resnet44_bs2048_ghost_bn256 --epochs 100 --b 2048 --lr_bb_fix --mini-batch-size 256;
python main_normal.py --dataset cifar100 --model resnet --save cifar100_wresnet16_4_bs1024_regime_adaptation --epochs 100 --b 1024 --lr_bb_fix --regime_bb_fix;
python main_gbn.py --model mnist_f1 --dataset mnist --save mnist_baseline_bs4096_gbn --epochs 50 --b 4096 --lr_bb_fix --no-regime_bb_fix --mini-batch-size 128;
  • See run_experiments.sh for more examples

Model configuration

Network model is defined by writing a .py file in models folder, and selecting it using the model flag. Model function must be registered in models/__init__.py The model function must return a trainable network. It can also specify additional training options such optimization regime (either a dictionary or a function), and input transform modifications.

e.g for a model definition:

class Model(nn.Module):

    def __init__(self, num_classes=1000):
        super(Model, self).__init__()
        self.model = nn.Sequential(...)

        self.regime = {
            0: {'optimizer': 'SGD', 'lr': 1e-2,
                'weight_decay': 5e-4, 'momentum': 0.9},
            15: {'lr': 1e-3, 'weight_decay': 0}
        }

        self.input_transform = {
            'train': transforms.Compose([...]),
            'eval': transforms.Compose([...])
        }
    def forward(self, inputs):
        return self.model(inputs)

 def model(**kwargs):
        return Model()
Owner
Elad Hoffer
Elad Hoffer
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022