Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

Overview

DIP-denosing

This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021).

Addressing the relationship between Deep image prior and effective degrees of freedom, DIP-SURE with STE(stochestic temporal ensemble) shows reasonable result on single image denoising.

If you use any of this code, please cite the following publication:

@article{jo2021dipdenoising,
  author  = {Yeonsik Jo, Se young chun,  and Choi, Jonghyun},
  title     = {Rethinking Deep Image Prior for Denoising},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {5087-5096}
}

Working environment

  • TITAN Xp
  • ubuntu 18.04.4
  • pytorch 1.6

Note: Experimental results were not checked in other environments.

Set-up

  • Make your own environment
conda create --name DIP --file requirements.txt
conda avtivate DIP
pip install tqdm

Inference

  • Produce CSet9 result
bash exp_denoising.sh CSet9 <GPU ID>
  • For your own data with sigma=25 setup
mkdir testset/<YOUR_DATASET>
python main.py --dip_type eSURE_new --net_type s2s --exp_tag <EXP_NAME> --optim RAdam --force_steplr --desc sigma25   denoising --sigma 25 --eval_data <YOUR_DATASET>

Browsing experimental result

  • We provide reporting code with invoke.
invoke showtable csv/<exp_type>/<exp_tag> 
  • Example.
invoke showtable csv/poisson/MNIST/
PURE_dc_scale001_new                     optimal stopping : 384.30,     31.97/0.02      | ZCSC : 447.60,         31.26/0.02 | STE 31.99/0.02
PURE_dc_scale01_new                      optimal stopping : 94.70,      24.96/0.12      | ZCSC : 144.60,         24.04/0.14 | STE 24.89/0.12
PURE_dc_scale02_new                      optimal stopping : 70.30,      22.92/0.20      | ZCSC : 110.00,         21.82/0.22 | STE 22.83/0.20
<EXEPRIMENTAL NAME>                      optimal stopping :<STEP>,      <PSNR>/<LPIPS>  | ZCSC : <STEP>,      <PSNR>/<LPIPS>| STE <PSNR>/<LPIPS>

The reported numbers are PSNR/LPIPS.

Results in paper

For the result used on paper, please refer this link.

SSIM score

For SSIM score of color images, I used matlab code same as the author of S2S.
This is the demo code I received from the S2S author.
Thank you Mingqin!

% examples
ref = im2double(imread('gt.png'));
noisy = im2double(imread('noisy.png'));
psnr_result = psnr(ref, noisy);
ssim_result = ssim(ref, noisy);

License

MIT license.

Contacts

For questions, please send an email to [email protected]

Owner
Computer Vision Lab. @ GIST
Some useful codes for computer vision and machine learning.
Computer Vision Lab. @ GIST
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022