Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

Overview

DIP-denosing

This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021).

Addressing the relationship between Deep image prior and effective degrees of freedom, DIP-SURE with STE(stochestic temporal ensemble) shows reasonable result on single image denoising.

If you use any of this code, please cite the following publication:

@article{jo2021dipdenoising,
  author  = {Yeonsik Jo, Se young chun,  and Choi, Jonghyun},
  title     = {Rethinking Deep Image Prior for Denoising},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {5087-5096}
}

Working environment

  • TITAN Xp
  • ubuntu 18.04.4
  • pytorch 1.6

Note: Experimental results were not checked in other environments.

Set-up

  • Make your own environment
conda create --name DIP --file requirements.txt
conda avtivate DIP
pip install tqdm

Inference

  • Produce CSet9 result
bash exp_denoising.sh CSet9 <GPU ID>
  • For your own data with sigma=25 setup
mkdir testset/<YOUR_DATASET>
python main.py --dip_type eSURE_new --net_type s2s --exp_tag <EXP_NAME> --optim RAdam --force_steplr --desc sigma25   denoising --sigma 25 --eval_data <YOUR_DATASET>

Browsing experimental result

  • We provide reporting code with invoke.
invoke showtable csv/<exp_type>/<exp_tag> 
  • Example.
invoke showtable csv/poisson/MNIST/
PURE_dc_scale001_new                     optimal stopping : 384.30,     31.97/0.02      | ZCSC : 447.60,         31.26/0.02 | STE 31.99/0.02
PURE_dc_scale01_new                      optimal stopping : 94.70,      24.96/0.12      | ZCSC : 144.60,         24.04/0.14 | STE 24.89/0.12
PURE_dc_scale02_new                      optimal stopping : 70.30,      22.92/0.20      | ZCSC : 110.00,         21.82/0.22 | STE 22.83/0.20
<EXEPRIMENTAL NAME>                      optimal stopping :<STEP>,      <PSNR>/<LPIPS>  | ZCSC : <STEP>,      <PSNR>/<LPIPS>| STE <PSNR>/<LPIPS>

The reported numbers are PSNR/LPIPS.

Results in paper

For the result used on paper, please refer this link.

SSIM score

For SSIM score of color images, I used matlab code same as the author of S2S.
This is the demo code I received from the S2S author.
Thank you Mingqin!

% examples
ref = im2double(imread('gt.png'));
noisy = im2double(imread('noisy.png'));
psnr_result = psnr(ref, noisy);
ssim_result = ssim(ref, noisy);

License

MIT license.

Contacts

For questions, please send an email to [email protected]

Owner
Computer Vision Lab. @ GIST
Some useful codes for computer vision and machine learning.
Computer Vision Lab. @ GIST
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022