Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

Related tags

Deep Learningmmo
Overview

MMO: Meta Multi-Objectivization for Software Configuration Tuning

This repository contains the data and code for the following paper that is currently submitting for publication:

Tao Chen and Miqing Li. MMO: Meta Multi-Objectivization for Software Configuration Tuning.

Introduction

In software configuration tuning, different optimizers have been designed to optimize a single performance objective (e.g.,minimizing latency), yet there is still little success in preventing (or mitigating) the search from being trapped in local optima — a hard nut to crack due to the complex configuration landscape and expensive measurement. To tackle this challenge, in this paper, we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, we show how to effectively use the MMO model without worrying about its weight — the only yet highly sensitive parameter that can determine its effectiveness. This is achieved by designing a new normalization method that allows an optimizer to adaptively find the right objective bounds when guiding the tuning. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 18 out of 22 cases while achieving up to 2.09x speedup. For 15 cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization proposed in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate FLASH, a recent model-based tuning tool, on 15 out of 22 cases with 1.22x speedup in general.

Data Result

The dataset of this work can be accessed via the Zenodo link here. In particular, the zip file contains all the raw data as reported in the paper; most of the structures are self-explained but we wish to highlight the following:

  • The data under the folder 1.0-0.0 and 0.0-1.0 are for the single-objective optimizers. The former uses O1 as the target performance objective while the latter uses O2 as the target. The data under other folders named by the subject systems are for the MMO and PMO. The result under the weight folder 1.0 are for MMO while all other folders represent different weight values, containing the data for MMO-FSE.

  • For those data of MMO, MMO-FSE, and PMO, the folder 0 and 1 denote using uses O1 and O2 as the target performance objective, respectively.

  • In the lowest-level folder where the data is stored (i.e., the sas folder), SolutionSet.rtf contains the results over all repeated runs; SolutionSetWithMeasurement.rtf records the results over different numbers of measurements.

Souce Code

The code folder contains all the information about the source code, as well as an executable jar file in the executable folder .

Running the Experiments

To run the experiments, one can download the mmo-experiments.jar from the aforementioned repository (under the executable folder). Since the artifacts were written in Java, we assume that the JDK/JRE has already been installed. Next, one can run the code using java -jar mmo-experiments.jar [subject] [runs], where [subject] and [runs] denote the subject software system and the number of repeated run (this is an integer and 50 is the default if it is not specified), respectively. The keyword for the systems/environments used in the paper are:

  • trimesh
  • x264
  • storm-wc
  • storm-rs
  • dnn-sa
  • dnn-adiac
  • mariadb
  • vp9
  • mongodb
  • lrzip
  • llvm

For example, running java -jar mmo-experiments.jar trimesh would execute experiments on the trimesh software for 50 repeated runs.

For each software system, the experiment consists of the runs for MMO, MMO-FSE with all weight values, PMO and the four state-of-the-art single-objective optimizers, as well as the FLASH and FLASH_MMO. All the outputs would be stored in the results folder at the same directory as the executable jar file.

All the measurement data of the subject configurable systems have been placed inside the mmo-experiments.jar.

Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022