An example of Scatterbrain implementation (combining local attention and Performer)

Overview

We use the template from https://github.com/ashleve/lightning-hydra-template. Please read the instructions there to understand the repo structure.

Implementation & Experiments

An example of Scatterbrain implementation (combining local attention and Performer) is in the file src/models/modules/attention/sblocal.py.

T2T-ViT inference on ImageNet

To run the T2T-ViT inference on ImageNet experiment:

  1. Download the pretrained weights from the [T2T-ViT repo][https://github.com/yitu-opensource/T2T-ViT/releases]:
mkdir -p checkpoints/t2tvit
cd checkpoints/t2tvit
wget https://github.com/yitu-opensource/T2T-ViT/releases/download/main/81.7_T2T_ViTt_14.pth.tar
  1. Convert the weights to the format compatible with our implementation of T2T-ViT:
# cd to scatterbrain path
python scripts/convert_checkpoint_t2t_vit.py checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar
  1. Download the ImageNet dataset (just the validation set will suffice). Below, /path/to/imagenet refers to the directory that contains the train and val directories.
  2. Run the inference experiments:
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=full datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 81.7% acc
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=local datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 80.6% acc
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=performer datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 77.8-79.0% acc (there's randomness)
python run.py experiment=imagenet-t2tvit-eval.yaml model/t2tattn_cfg=sblocal datamodule.data_dir=/path/to/imagenet/ eval.ckpt=checkpoints/t2tvit/81.7_T2T_ViTt_14.pth.tar  # 81.1% acc

Requirements

Python 3.8+, Pytorch 1.9+, torchvision, torchtext, pytorch-fast-transformers, munch, einops, timm, hydra-core, hydra-colorlog, python-dotenv, rich, pytorch-lightning, lightning-bolts.

We provide a Dockerfile that lists all the required packages.

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@inproceedings{chen2021scatterbrain,
  title={Scatterbrain: Unifying Sparse and Low-rank Attention},
  author={Beidi Chen and Tri Dao and Eric Winsor and Zhao Song and Atri Rudra and Christopher R\'{e}},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022