A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Overview

ClusterGCN

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Abstract

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy -- using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71.

This repository provides a PyTorch implementation of ClusterGCN as described in the paper:

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh. KDD, 2019. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           1.11
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
scipy              1.1.0
argparse           1.1.0
torch              0.4.1
torch-geometric    0.3.1
metis              0.2a.4
scikit-learn       0.20
torch_spline_conv  1.0.4
torch_sparse       0.2.2
torch_scatter      1.0.4
torch_cluster      1.1.5

Installing metis on Ubuntu:

sudo apt-get install libmetis-dev

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Pubmed` is included in the `input/` directory. In addition to the edgelist there is a csv file with the sparse features and another one with the target variable.

The **feature matrix** is a sparse one and it is stored as a csv. Features are indexed from 0 consecutively. The feature matrix csv is structured as:

NODE ID FEATURE ID Value
0 3 0.2
0 7 0.5
1 17 0.8
1 4 5.4
1 38 1.3
... ... ...
n 3 0.9

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

The training of a ClusterGCN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/edges.csv`.
  --features-path   STR    Features csv.         Default is `input/features.csv`.
  --target-path     STR    Target classes csv.    Default is `input/target.csv`.

Model options

  --clustering-method   STR     Clustering method.             Default is `metis`.
  --cluster-number      INT     Number of clusters.            Default is 10. 
  --seed                INT     Random seed.                   Default is 42.
  --epochs              INT     Number of training epochs.     Default is 200.
  --test-ratio          FLOAT   Training set ratio.            Default is 0.9.
  --learning-rate       FLOAT   Adam learning rate.            Default is 0.01.
  --dropout             FLOAT   Dropout rate value.            Default is 0.5.
  --layers              LST     Layer sizes.                   Default is [16, 16, 16]. 

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a ClusterGCN model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with a different layer structure:

$ python src/main.py --layers 64 64

Training a random clustered model:

$ python src/main.py --clustering-method random

License

Comments
  • Segmentation fault While running main.py on Ubuntu

    Segmentation fault While running main.py on Ubuntu

    while i am running main.py i am getting the segmentation fault error on Ubuntu.

    python3 main.py --epochs 100

    +-------------------+----------------------------------------------------------+ | Parameter | Value | +===================+==========================================================+ | Cluster number | 10 | +-------------------+----------------------------------------------------------+ | Clustering method | metis | +-------------------+----------------------------------------------------------+ | Dropout | 0.500 | +-------------------+----------------------------------------------------------+ | Edge path | /home/User/Desktop/ClusterGCN-master/input/edges.csv | +-------------------+----------------------------------------------------------+ | Epochs | 100 | +-------------------+----------------------------------------------------------+ | Features path | /home/User/Desktop/ClusterGCN- | | | master/input/features.csv | +-------------------+----------------------------------------------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------------------------------------------+ | Learning rate | 0.010 | +-------------------+----------------------------------------------------------+ | Seed | 42 | +-------------------+----------------------------------------------------------+ | Target path | /home/User/Desktop/ClusterGCN- | | | master/input//target.csv | +-------------------+----------------------------------------------------------+ | Test ratio | 0.900 | +-------------------+----------------------------------------------------------+

    Metis graph clustering started.

    Segmentation fault

    opened by alamsaqib 4
  • ImportError: No module named 'torch_spline_conv'

    ImportError: No module named 'torch_spline_conv'

    I followed the instructions of installation properly, however, error above occurred.

    After checking the site packages folder, i do not find the file torch_spline_conv. I will google around for finding out why that is happening, but thought you might have some insights

    Any help is appreciated.

    The complete trace is as follows

    File "src/main.py", line 4, in <module>
        from clustergcn import ClusterGCNTrainer
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/clustergcn.py", line 5, in <module>
        from layers import StackedGCN
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/layers.py", line 2, in <module>
        from torch_geometric.nn import GCNConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/__init__.py", line 1, in <module>
        from .conv import *  # noqa
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/__init__.py", line 1, in <module>
        from .spline_conv import SplineConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/spline_conv.py", line 3, in <module>
        from torch_spline_conv import SplineConv as Conv
    ImportError: No module named 'torch_spline_conv'
    
    
    opened by 1byxero 2
  • For ppi

    For ppi

    Hello. Thanks for your work and code. It's great that Cluster-GCN achieves great performance in PPI datasets. But it seems that you have not opened source the code for PPI node classification.

    Do you find the best model on validation dataset at first then test on the unseen test dataset? I notice that GraphStar now is the SOTA. However, they don't use the validation dataset and directly find the best model on test dataset.

    Can you share code of PPI with us and mention how to split dataset in the readme file? It's important for others to follow your great job.

    opened by guochengqian 2
  • Metis hits a Segmentation fault when running _METIS_PartGraphKway

    Metis hits a Segmentation fault when running _METIS_PartGraphKway

    • I'm using the default test input files.

    • I've attached pdb screenshot during the run.

    • Environment: Ubuntu 18.04 Anaconda (Python 3.7.3),
      torch-geometric==1.3.0 torch-scatter==1.3.0 torch-sparse==0.4.0 torch-spline-conv==1.1.0 metis==0.2a.4

    PDB Error Screenshot from 2019-07-04 13-56-16

    Requirements.txt Screenshot from 2019-07-04 14-02-14

    opened by poppingtonic 2
  • The error of metis, Segmentation fault (core dumped)

    The error of metis, Segmentation fault (core dumped)

    I found that I can use the random model to divide the graph, but when using Metis, the code will terminate abnormally. I want to ask what causes this. I change "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '32')" in metis.py (line 31) to "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '64')", but it doesn't work!!!

    python src/main.py +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 200 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Segmentation fault (core dumped)

    opened by yiyang-wang 1
  • TypeError: object of type 'int' has no len()

    TypeError: object of type 'int' has no len()

    hello, when I run main.py, I found the error message: File "D:\anaconda3.4\lib\site-packages\pymetis_init_.py", line 44, in _prepare_graph for i in range(len(adjacency)): TypeError: object of type 'int' has no len()

    I have installed pymetis package to solve the metis.dll, this error occurs in the pymetis_init_.py. do you know how to solve it?

    opened by tanjia123456 1
  • RuntimeError: Could not locate METIS dll.

    RuntimeError: Could not locate METIS dll.

    hello,when I run main.py, the error massage appears:

    raise RuntimeError('Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.') RuntimeError: Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.

    do you know how to solve it?

    opened by tanjia123456 1
  • Runtime error about metis

    Runtime error about metis

    At the train begining that part the full graph, the function "metis.part_graph(self.graph, self.args.cluster_number)" throws an error: Traceback (most recent call last): File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 30, in <module> main() File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 19, in main clustering_machine.decompose() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 38, in decompose self.metis_clustering() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 800, in part_graph _METIS_PartGraphKway(*args) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 677, in _METIS_PartGraphKway adjwgt, nparts, tpwgts, ubvec, options, objval, part) OSError: exception: access violation writing 0x000001B0B9C0E000

    But I tried test package metis as follow, It works: ` import metis from networkx import karate_club_graph

    zkc = karate_club_graph() graph_clustering=metis.part_graph(zkc) ` So, what happend?

    opened by ByskyXie 1
  • some question about code

    some question about code

    It seems like your code didn't consider the connection between clusters,and normalization that are mentioned in paper ,will you add these two options?

    opened by thunderbird0902 1
  • About installation

    About installation

    Hi there: Thank you for your great work, I've finally got the code running. To make the installation in README.md more precise & complete. You may want to add the following dependancies:

    • torch_spline_conv == 1.0.4
    • torch_sparse == 0.2.2
    • torch_scatter == 1.0.4
    • torch_cluster == 1.1.5 (strict)
    opened by dkdk-ddk 1
  • Cannot run main.py

    Cannot run main.py

    src/main.py --epochs 100 +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 100 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Traceback (most recent call last): File "src/main.py", line 24, in main() File "src/main.py", line 18, in main clustering_machine.decompose() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 38, in decompose self.metis_clustering() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "/usr/local/lib/python3.7/site-packages/metis.py", line 765, in part_graph graph = networkx_to_metis(graph) File "/usr/local/lib/python3.7/site-packages/metis.py", line 574, in networkx_to_metis for i in H.node: AttributeError: 'Graph' object has no attribute 'node'

    opened by linkerlin 1
  • issues about the metis algorithm

    issues about the metis algorithm

    (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) Thanks for your awesome code, could you please tell me how metis conduct the graph partition? Cause the self.graph here doesn't include the information about edge weights and feature attributes.

    opened by immortal13 2
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022