The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Overview

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds

image In this project, we aimed to develop a deep learning (DL) method to automatically detect impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical four-chamber (A4C) ultrasound cineloops. Two R(2+1)D convolutional neural networks (CNNs) were trained to detect the respective diseases. Subsequently, tSNE was used to visualize the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image features associated with the diagnostic tasks.

The why

  • An automated echocardiography interpretation method requiring only limited views as input, say A4C, could make cardiovascular disease diagnosis more accessible.

    • Such system could become beneficial in geographic regions with limited access to expert cardiologists and sonographers.
    • It could also support general practitioners in the management of patients with suspected CVD, facilitating timely diagnosis and treatment of patients.
  • If the trained CNN can detect the diseases based on limited information, how?

    • Especially, AV regurgitation is typically diagnosed based on color Doppler images using one or more viewpoints. When given only the A4C view, would the model be able to detect regurgitation? If so, what image features does the model use to make the distinction? Since it’s on the A4C view, would the model identify some anatomical structure or movement associated with regurgitation, which are typically not being considered in conventional image interpretation? This is what we try to find out in the study.

Image features associated with the diagnostic tasks

DeepLIFT attributes a model’s classification output to certain input features (pixels), which allows us to understand which region or frame in an ultrasound is the key that makes the model classify it as a certain diagnosis. Below are some example analyses.

Representative normal cases

Case Averaged logit Input clip / Impaired LV function model's focus / AV regurgitation model's focus
Normal1 0.9999 image
Normal2 0.9999 image
Normal3 0.9999 image
Normal4 0.9999 image
Normal5 0.9999 image
Normal6 0.9999 image
Normal7 0.9998 image
Normal8 0.9998 image
Normal9 0.9998 image
Normal10 0.9997 image

DeepLIFT analyses reveal that the LV myocardium and mitral valve were important for detecting impaired LV function, while the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Apart from the above examples, all confident cases are provided, which the predicted probability of being the normal class by the two models are both higher than 0.98. See the full list here.

Representative disease cases

  • Mildly impaired LV
Case Logit Input clip / Impaired LV function model's focus
MildILV1 0.9989 image
MildILV2 0.9988 image
  • Severely impaired LV
Case Logit Input clip / Impaired LV function model's focus
SevereILV1 1.0000 image
SevereILV2 1.0000 image
  • Mild AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
MildAVR1 0.7240 image
MildAVR2 0.6893 image
  • Substantial AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
SubstantialAVR1 0.9919 image
SubstantialAVR2 0.9645 image

When analyzing disease cases, the highlighted regions in different queries are quite different. We speculate that this might be due to a higher heterogeneity in the appearance of the disease cases. Apart from the above examples, more confident disease cases are provided. See the full list here.

Run the code on your own dataset

The dataloader in util can be modified to fit your own dataset. To run the full workflow, namely training, validation, testing, and the subsequent analyses, simply run the following commands:

git clone https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature.git
cd Disease-Detection-and-Diagnostic-Image-Feature/util
pip install -e .
cd ../projectDDDIF
python main.py

Loading the trained model weights

The model weights are made available for external validation, or as pretraining for other echocardiography-related tasks. To load the weights, navigate to the projectDDDIF folder, and run the following python code:

import torch
import torch.nn as nn
import torchvision

#Load impaired LV model
model_path = 'model/impairedLV/train/model_val_min.pth'
# #Load AV regurgitation model
# model_path = 'model/regurg/train/model_val_min.pth'

model = torchvision.models.video.__dict__["r2plus1d_18"](pretrained=False)
model.stem[0] = nn.Conv3d(1, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load(model_path))

Questions and feedback

For techinical problems or comments about the project, feel free to contact [email protected].

Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022