The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Overview

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds

image In this project, we aimed to develop a deep learning (DL) method to automatically detect impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical four-chamber (A4C) ultrasound cineloops. Two R(2+1)D convolutional neural networks (CNNs) were trained to detect the respective diseases. Subsequently, tSNE was used to visualize the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image features associated with the diagnostic tasks.

The why

  • An automated echocardiography interpretation method requiring only limited views as input, say A4C, could make cardiovascular disease diagnosis more accessible.

    • Such system could become beneficial in geographic regions with limited access to expert cardiologists and sonographers.
    • It could also support general practitioners in the management of patients with suspected CVD, facilitating timely diagnosis and treatment of patients.
  • If the trained CNN can detect the diseases based on limited information, how?

    • Especially, AV regurgitation is typically diagnosed based on color Doppler images using one or more viewpoints. When given only the A4C view, would the model be able to detect regurgitation? If so, what image features does the model use to make the distinction? Since it’s on the A4C view, would the model identify some anatomical structure or movement associated with regurgitation, which are typically not being considered in conventional image interpretation? This is what we try to find out in the study.

Image features associated with the diagnostic tasks

DeepLIFT attributes a model’s classification output to certain input features (pixels), which allows us to understand which region or frame in an ultrasound is the key that makes the model classify it as a certain diagnosis. Below are some example analyses.

Representative normal cases

Case Averaged logit Input clip / Impaired LV function model's focus / AV regurgitation model's focus
Normal1 0.9999 image
Normal2 0.9999 image
Normal3 0.9999 image
Normal4 0.9999 image
Normal5 0.9999 image
Normal6 0.9999 image
Normal7 0.9998 image
Normal8 0.9998 image
Normal9 0.9998 image
Normal10 0.9997 image

DeepLIFT analyses reveal that the LV myocardium and mitral valve were important for detecting impaired LV function, while the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Apart from the above examples, all confident cases are provided, which the predicted probability of being the normal class by the two models are both higher than 0.98. See the full list here.

Representative disease cases

  • Mildly impaired LV
Case Logit Input clip / Impaired LV function model's focus
MildILV1 0.9989 image
MildILV2 0.9988 image
  • Severely impaired LV
Case Logit Input clip / Impaired LV function model's focus
SevereILV1 1.0000 image
SevereILV2 1.0000 image
  • Mild AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
MildAVR1 0.7240 image
MildAVR2 0.6893 image
  • Substantial AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
SubstantialAVR1 0.9919 image
SubstantialAVR2 0.9645 image

When analyzing disease cases, the highlighted regions in different queries are quite different. We speculate that this might be due to a higher heterogeneity in the appearance of the disease cases. Apart from the above examples, more confident disease cases are provided. See the full list here.

Run the code on your own dataset

The dataloader in util can be modified to fit your own dataset. To run the full workflow, namely training, validation, testing, and the subsequent analyses, simply run the following commands:

git clone https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature.git
cd Disease-Detection-and-Diagnostic-Image-Feature/util
pip install -e .
cd ../projectDDDIF
python main.py

Loading the trained model weights

The model weights are made available for external validation, or as pretraining for other echocardiography-related tasks. To load the weights, navigate to the projectDDDIF folder, and run the following python code:

import torch
import torch.nn as nn
import torchvision

#Load impaired LV model
model_path = 'model/impairedLV/train/model_val_min.pth'
# #Load AV regurgitation model
# model_path = 'model/regurg/train/model_val_min.pth'

model = torchvision.models.video.__dict__["r2plus1d_18"](pretrained=False)
model.stem[0] = nn.Conv3d(1, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load(model_path))

Questions and feedback

For techinical problems or comments about the project, feel free to contact [email protected].

HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022