Bayesian dessert for Lasagne

Overview

Gelato

Coverage Status

Bayesian dessert for Lasagne

Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the best ways to deal with uncertainty, overfitting but still having good performance. Gelato will help to use bayes for neural networks. Library heavily relies on Theano, Lasagne and PyMC3.

Installation

  • from github (assumes bleeding edge pymc3 installed)
    # pip install git+git://github.com/pymc-devs/pymc3.git
    pip install git+https://github.com/ferrine/gelato.git
  • from source
    git clone https://github.com/ferrine/gelato
    pip install -r gelato/requirements.txt
    pip install -e gelato

Usage

I use generic approach for decorating all Lasagne at once. Thus, for using Gelato you need to replace import statements for layers only. For constructing a network you need to be the in pm.Model context environment.

Warning

  • lasagne.layers.noise is not supported
  • lasagne.layers.normalization is not supported (theano problems with default updates)
  • functions from lasagne.layers are hidden in gelato as they use Lasagne classes. Some exceptions are done for lasagne.layers.helpers. I'll try to solve the problem generically in future.

Examples

For comprehensive example of using Gelato you can reference this notebook

Life Hack

Any spec class can be used standalone so feel free to use it everywhere

References

Charles Blundell et al: "Weight Uncertainty in Neural Networks" (arXiv preprint arXiv:1505.05424)

You might also like...
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

Safe Bayesian Optimization
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

Code for
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

(under submission) Bayesian Integration of a Generative Prior for Image Restoration
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Sรผsstrunk {Note: p

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

Supporting code for the paper
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Comments
  • Exception in example NB

    Exception in example NB

    I'm up-to-date on pymc3 and gelato.

    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in __call__(self, *inputs, **kwargs)
        624                 try:
    --> 625                     storage_map[ins] = [self._get_test_value(ins)]
        626                     compute_map[ins] = [True]
    
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in _get_test_value(cls, v)
        580         detailed_err_msg = utils.get_variable_trace_string(v)
    --> 581         raise AttributeError('%s has no test value %s' % (v, detailed_err_msg))
        582 
    
    AttributeError: Softmax.0 has no test value  
    Backtrace when that variable is created:
    
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
        return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
        interactivity=interactivity, compiler=compiler, result=result)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
        if self.run_code(code, result):
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-18-7dd01309b711>", line 37, in <module>
        prediction = gelato.layers.get_output(network)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/helper.py", line 190, in get_output
        all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/dense.py", line 124, in get_output_for
        return self.nonlinearity(activation)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/nonlinearities.py", line 44, in softmax
        return theano.tensor.nnet.softmax(x)
    
    
    During handling of the above exception, another exception occurred:
    
    ValueError                                Traceback (most recent call last)
    <ipython-input-18-7dd01309b711> in <module>()
         44                    prediction,
         45                    observed=target_var,
    ---> 46                    total_size=total_size)
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/distribution.py in __new__(cls, name, *args, **kwargs)
         35                 raise TypeError("observed needs to be data but got: {}".format(type(data)))
         36             total_size = kwargs.pop('total_size', None)
    ---> 37             dist = cls.dist(*args, **kwargs)
         38             return model.Var(name, dist, data, total_size)
         39         else:
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/distribution.py in dist(cls, *args, **kwargs)
         46     def dist(cls, *args, **kwargs):
         47         dist = object.__new__(cls)
    ---> 48         dist.__init__(*args, **kwargs)
         49         return dist
         50 
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/discrete.py in __init__(self, p, *args, **kwargs)
        429         super(Categorical, self).__init__(*args, **kwargs)
        430         try:
    --> 431             self.k = tt.shape(p)[-1].tag.test_value
        432         except AttributeError:
        433             self.k = tt.shape(p)[-1]
    
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in __call__(self, *inputs, **kwargs)
        637                         raise ValueError(
        638                             'Cannot compute test value: input %i (%s) of Op %s missing default value. %s' %
    --> 639                             (i, ins, node, detailed_err_msg))
        640                     elif config.compute_test_value == 'ignore':
        641                         # silently skip test
    
    ValueError: Cannot compute test value: input 0 (Softmax.0) of Op Shape(Softmax.0) missing default value.  
    Backtrace when that variable is created:
    
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
        return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
        interactivity=interactivity, compiler=compiler, result=result)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
        if self.run_code(code, result):
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-18-7dd01309b711>", line 37, in <module>
        prediction = gelato.layers.get_output(network)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/helper.py", line 190, in get_output
        all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/dense.py", line 124, in get_output_for
        return self.nonlinearity(activation)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/nonlinearities.py", line 44, in softmax
        return theano.tensor.nnet.softmax(x)
    
    opened by twiecki 12
  • Integrate opvi

    Integrate opvi

    I'm currently integrating recent changes in PyMC3 to gelato. There are a lot of changes. Everyone is welcome for discussion.

    Here are the most remarkable features:

    • no more with context when using gelato layers
    from gelato.layers import *
    import pymc3 as pm
    # get data somehow
    inp = InputLayer(shape)
    out = DenseLayer(inp, 1, W=NormalSpec(sd=LognormalSpec(sd=.1)))
    out = DenseLayer(out, 1, W=NormalSpec(sd=LognormalSpec(sd=.1)))
    with out.root:
        pm.Normal('y', mu=get_output(out, {inp:x}),
                  observed=y)
        approx = pm.fit(10000)
    
    • Flexible Specs you can do almost everything. What to do if we want different shapes there is an open question
    from gelato import *
    import theano.tensor as tt
    import pymc3 as pm
    func = as_spec_op(tt.nlinalg.matrix_power)
    expr0= func(NormalSpec() * LaplaceSpec(), 2)
    expr1 = expr0 / 100 - NormalSpec()
    with Model() as model:
        var = expr((10, 10))
        assert var.tag.test_value.shape == (10, 10)
        assert len(model.free_RVs) == 3
        fit(100)
    U = NormalSpec()
    V = UniformSpec()
    V = V / V.norm(2)
    W = U*V
    with pm.Model() as model:
        result = W((3, 2), name='weight_normalization')
    
    opened by ferrine 2
  • Fix example

    Fix example

    refere to #7. I've updated example using new pm.Minibatch API. All was running good with the following theanorc:

    [global]
    device=cpu
    floatX=float32
    mode=FAST_RUN
    optimizer_including=cudnn
    
    [lib]
    cnmem=0.95
    
    [nvcc]
    fastmath=True
    flags = -I/usr/local/cuda-8.0-cudnnv5.1/include -L/usr/local/cuda-8.0-cudnnv5.1/lib64
    
    [blas]
    ldflag = -L/usr/lib/openblas-base -Lusr/local/cuda-8.0-cudnnv5.1/lib64 -lopenblas
    
    [DebugMode]
    check_finite=1
    
    [cuda]
    root=/usr/local/cuda-8.0-cudnnv5.1/
    

    pip freeze output

    alabaster==0.7.10
    algopy==0.5.3
    Babel==2.4.0
    bleach==2.0.0
    CommonMark==0.5.4
    cycler==0.10.0
    Cython==0.25.2
    decorator==4.0.11
    docutils==0.13.1
    entrypoints==0.2.2
    -e git+https://github.com/ferrine/[email protected]#egg=gelato
    h5py==2.7.0
    html5lib==0.999999999
    imagesize==0.7.1
    ipykernel==4.6.1
    ipython==6.0.0
    ipython-genutils==0.2.0
    ipywidgets==6.0.0
    Jinja2==2.9.6
    joblib==0.11
    jsonschema==2.6.0
    jupyter==1.0.0
    jupyter-client==5.0.1
    jupyter-console==5.1.0
    jupyter-core==4.3.0
    Keras==2.0.4
    Lasagne==0.2.dev1
    Mako==1.0.6
    MarkupSafe==1.0
    matplotlib==2.0.0
    mistune==0.7.4
    more-itertools==3.1.0
    nbconvert==5.1.1
    nbformat==4.3.0
    nbsphinx==0.2.13
    nose==1.3.7
    notebook==5.0.0
    numdifftools==0.9.20
    numpy==1.13.0
    pandas==0.20.1
    pandocfilters==1.4.1
    patsy==0.4.1
    pexpect==4.2.1
    pickleshare==0.7.4
    prompt-toolkit==1.0.14
    ptyprocess==0.5.1
    Pygments==2.2.0
    pygpu==0.6.5
    -e git+https://github.com/ferrine/[email protected]#egg=pymc3
    pymongo==3.4.0
    pyparsing==2.2.0
    python-dateutil==2.6.0
    pytz==2017.2
    PyYAML==3.12
    pyzmq==16.0.2
    qtconsole==4.3.0
    recommonmark==0.4.0
    requests==2.13.0
    scikit-learn==0.18.1
    scipy==0.19.1
    seaborn==0.7.1
    simplegeneric==0.8.1
    six==1.10.0
    sklearn==0.0
    snowballstemmer==1.2.1
    Sphinx==1.5.5
    terminado==0.6
    testpath==0.3
    Theano==0.10.0.dev1
    tornado==4.5.1
    tqdm==4.11.2
    traitlets==4.3.2
    wcwidth==0.1.7
    webencodings==0.5.1
    widgetsnbextension==2.0.0
    xmltodict==0.11.0
    
    opened by ferrine 0
  • Not compatible with latest version of pymc3

    Not compatible with latest version of pymc3

    When I attempt to import gelato, it fails with the following error message:

    ---> 19 class LayerModelMeta(pm.model.InitContextMeta):
         20     """Magic comes here
         21     """
    
    AttributeError: module 'pymc3.model' has no attribute 'InitContextMeta'
    

    I believe that InitContextMeta no longer exists in pymc3; it's been merged with ContextMeta.

    I don't know if there are plans to update this repository anytime soon, although it does seem like a useful tool, so it would be great if it worked with the latest pymc3.

    opened by quevivasbien 2
Releases(v0.1.0)
Owner
Maxim Kochurov
Researcher @ NTechLab; MSU/Skoltech; Core Dev @ PyMC3, Geoopt
Maxim Kochurov
A framework for attentive explainable deep learning on tabular data

๐Ÿง  kendrite A framework for attentive explainable deep learning on tabular data ๐Ÿ’จ Quick start kedro run ๐Ÿงฑ Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
๐Ÿ… Top 5% in ์ œ2ํšŒ ์—ฐ๊ตฌ๊ฐœ๋ฐœํŠน๊ตฌ ์ธ๊ณต์ง€๋Šฅ ๊ฒฝ์ง„๋Œ€ํšŒ AI SPARK ์ฑŒ๋ฆฐ์ง€

AI_SPARK_CHALLENG_Object_Detection ์ œ2ํšŒ ์—ฐ๊ตฌ๊ฐœ๋ฐœํŠน๊ตฌ ์ธ๊ณต์ง€๋Šฅ ๊ฒฝ์ง„๋Œ€ํšŒ AI SPARK ์ฑŒ๋ฆฐ์ง€ ๐Ÿ… Top 5% in mAP(0.75) (443๋ช… ์ค‘ 13๋“ฑ, mAP: 0.98116) ๋Œ€ํšŒ ์„ค๋ช… Edge ํ™˜๊ฒฝ์—์„œ์˜ ๊ฐ€์ถ• Object Dete

3 Sep 19, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
You Only ๐Ÿ‘€ One Sequence

You Only ๐Ÿ‘€ One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022