PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Related tags

Deep LearningPClean
Overview

PClean

Build Status

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Warning: This is a rapidly evolving research prototype.

PClean was created at the MIT Probabilistic Computing Project.

If you use PClean in your research, please cite the our 2021 AISTATS paper:

PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. Lew, A. K.; Agrawal, M.; Sontag, D.; and Mansinghka, V. K. (2021, March). In International Conference on Artificial Intelligence and Statistics (pp. 1927-1935). PMLR. (pdf)

Using PClean

To use PClean, create a Julia file with the following structure:

using PClean
using DataFrames: DataFrame
import CSV

# Load data
data = CSV.File(filepath) |> DataFrame

# Define PClean model
PClean.@model MyModel begin
    @class ClassName1 begin
        ...
    end

    ...
    
    @class ClassNameN begin
        ...
    end
end

# Align column names of CSV with variables in the model.
# Format is ColumnName CleanVariable DirtyVariable, or, if
# there is no corruption for a certain variable, one can omit
# the DirtyVariable.
query = @query MyModel.ClassNameN [
  HospitalName hosp.name             observed_hosp_name
  Condition    metric.condition.desc observed_condition
  ...
]

# Configure observed dataset
observations = [ObservedDataset(query, data)]

# Configuration
config = PClean.InferenceConfig(1, 2; use_mh_instead_of_pg=true)

# SMC initialization
state = initialize_trace(observations, config)

# Rejuvenation sweeps
run_inference!(state, config)

# Evaluate accuracy, if ground truth is available
ground_truth = CSV.File(filepath) |> CSV.DataFrame
results = evaluate_accuracy(data, ground_truth, state, query)

# Can print results.f1, results.precision, results.accuracy, etc.
println(results)

# Even without ground truth, can save the entire latent database to CSV files:
PClean.save_results(dir, dataset_name, state, observations)

Then, from this directory, run the Julia file.

JULIA_PROJECT=. julia my_file.jl

To learn to write a PClean model, see our paper, but note the surface syntax changes described below.

Differences from the paper

As a DSL embedded into Julia, our implementation of the PClean language has some differences, in terms of surface syntax, from the stand-alone syntax presented in our paper:

(1) Instead of latent class C ... end, we write @class C begin ... end.

(2) Instead of subproblem begin ... end, inference hints are given using ordinary Julia begin ... end blocks.

(3) Instead of parameter x ~ d(...), we use @learned x :: D{...}. The set of distributions D for parameters is somewhat restricted.

(4) Instead of x ~ d(...) preferring E, we write x ~ d(..., E).

(5) Instead of observe x as y, ... from C, write @query ModelName.C [x y; ...]. Clauses of the form x z y are also allowed, and tell PClean that the model variable C.z represents a clean version of x, whose observed (dirty) version is modeled as C.y. This is used when automatically reconstructing a clean, flat dataset.

The names of built-in distributions may also be different, e.g. AddTypos instead of typos, and ProportionsParameter instead of dirichlet.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022