PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Related tags

Deep LearningPClean
Overview

PClean

Build Status

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Warning: This is a rapidly evolving research prototype.

PClean was created at the MIT Probabilistic Computing Project.

If you use PClean in your research, please cite the our 2021 AISTATS paper:

PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. Lew, A. K.; Agrawal, M.; Sontag, D.; and Mansinghka, V. K. (2021, March). In International Conference on Artificial Intelligence and Statistics (pp. 1927-1935). PMLR. (pdf)

Using PClean

To use PClean, create a Julia file with the following structure:

using PClean
using DataFrames: DataFrame
import CSV

# Load data
data = CSV.File(filepath) |> DataFrame

# Define PClean model
PClean.@model MyModel begin
    @class ClassName1 begin
        ...
    end

    ...
    
    @class ClassNameN begin
        ...
    end
end

# Align column names of CSV with variables in the model.
# Format is ColumnName CleanVariable DirtyVariable, or, if
# there is no corruption for a certain variable, one can omit
# the DirtyVariable.
query = @query MyModel.ClassNameN [
  HospitalName hosp.name             observed_hosp_name
  Condition    metric.condition.desc observed_condition
  ...
]

# Configure observed dataset
observations = [ObservedDataset(query, data)]

# Configuration
config = PClean.InferenceConfig(1, 2; use_mh_instead_of_pg=true)

# SMC initialization
state = initialize_trace(observations, config)

# Rejuvenation sweeps
run_inference!(state, config)

# Evaluate accuracy, if ground truth is available
ground_truth = CSV.File(filepath) |> CSV.DataFrame
results = evaluate_accuracy(data, ground_truth, state, query)

# Can print results.f1, results.precision, results.accuracy, etc.
println(results)

# Even without ground truth, can save the entire latent database to CSV files:
PClean.save_results(dir, dataset_name, state, observations)

Then, from this directory, run the Julia file.

JULIA_PROJECT=. julia my_file.jl

To learn to write a PClean model, see our paper, but note the surface syntax changes described below.

Differences from the paper

As a DSL embedded into Julia, our implementation of the PClean language has some differences, in terms of surface syntax, from the stand-alone syntax presented in our paper:

(1) Instead of latent class C ... end, we write @class C begin ... end.

(2) Instead of subproblem begin ... end, inference hints are given using ordinary Julia begin ... end blocks.

(3) Instead of parameter x ~ d(...), we use @learned x :: D{...}. The set of distributions D for parameters is somewhat restricted.

(4) Instead of x ~ d(...) preferring E, we write x ~ d(..., E).

(5) Instead of observe x as y, ... from C, write @query ModelName.C [x y; ...]. Clauses of the form x z y are also allowed, and tell PClean that the model variable C.z represents a clean version of x, whose observed (dirty) version is modeled as C.y. This is used when automatically reconstructing a clean, flat dataset.

The names of built-in distributions may also be different, e.g. AddTypos instead of typos, and ProportionsParameter instead of dirichlet.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022