Deep Multimodal Neural Architecture Search

Related tags

Deep Learningmmnas
Overview

MMNas: Deep Multimodal Neural Architecture Search

This repository corresponds to the PyTorch implementation of the MMnas for visual question answering (VQA), visual grounding (VGD), and image-text matching (ITM) tasks.

example-image

Prerequisites

Software and Hardware Requirements

You may need a machine with at least 4 GPU (>= 8GB), 50GB memory for VQA and VGD and 150GB for ITM and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O.

You should first install some necessary packages.

  1. Install Python >= 3.6

  2. Install Cuda >= 9.0 and cuDNN

  3. Install PyTorch >= 0.4.1 with CUDA (Pytorch 1.x is also supported).

  4. Install SpaCy and initialize the GloVe as follows:

    $ pip install -r requirements.txt
    $ wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
    $ pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset Preparations

Please follow the instructions in dataset_setup.md to download the datasets and features.

Search

To search an optimal architecture for a specific task, run

$ python3 search_[vqa|vgd|vqa].py

At the end of each searching epoch, we will output the optimal architecture (choosing operators with largest architecture weight for every block) accroding to current architecture weights. When the optimal architecture doesn't change for several continuous epochs, you can kill the searching process manually.

Training

The following script will start training network with the optimal architecture that we've searched by MMNas:

$ python3 train_[vqa|vgd|itm].py --RUN='train' --ARCH_PATH='./arch/train_vqa.json'

To add:

  1. --VERSION=str, e.g.--VERSION='mmnas_vqa' to assign a name for your this model.

  2. --GPU=str, e.g.--GPU='0, 1, 2, 3' to train the model on specified GPU device.

  3. --NW=int, e.g.--NW=8 to accelerate I/O speed.

  1. --RESUME to start training with saved checkpoint parameters.

  2. --ARCH_PATH can use the different searched architectures.

If you want to evaluate an architecture that you got from seaching stage, for example, it's the output architecture at the 50-th searching epoch for vqa model, you can run

$ python3 train_vqa.py --RUN='train' --ARCH_PATH='[PATH_TO_YOUR_SEARCHING_LOG]' --ARCH_EPOCH=50

Validation and Testing

Offline Evaluation

It's convenient to modify follows args: --RUN={'val', 'test'} --CKPT_PATH=[Your Model Path] to Run val or test Split.

Example:

$ python3 train_vqa.py --RUN='test' --CKPT_PATH=[Your Model Path] --ARCH_PATH=[Searched Architecture Path]

Online Evaluation (ONLY FOR VQA)

Test Result files will stored in ./logs/ckpts/result_test/result_train_[Your Version].json

You can upload the obtained result file to Eval AI to evaluate the scores on test-dev and test-std splits.

Pretrained Models

We provide the pretrained models in pretrained_models.md to reproduce the experimental results in our paper.

Citation

If this repository is helpful for your research, we'd really appreciate it if you could cite the following paper:

@article{yu2020mmnas,
  title={Deep Multimodal Neural Architecture Search},
  author={Yu, Zhou and Cui, Yuhao and Yu, Jun and Wang, Meng and Tao, Dacheng and Tian, Qi},
  journal={Proceedings of the 28th ACM International Conference on Multimedia},
  pages = {3743--3752},
  year={2020}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023