DETReg: Unsupervised Pretraining with Region Priors for Object Detection

Overview

DETReg: Unsupervised Pretraining with Region Priors for Object Detection

Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson

DETReg

This repository is the implementation of DETReg, see Project Page.

Release

  • COCO training code and eval - DONE
  • Pretrained models - DONE
  • Pascal VOC training code and eval- TODO

Introduction

DETReg is an unsupervised pretraining approach for object DEtection with TRansformers using Region priors. Motivated by the two tasks underlying object detection: localization and categorization, we combine two complementary signals for self-supervision. For an object localization signal, we use pseudo ground truth object bounding boxes from an off-the-shelf unsupervised region proposal method, Selective Search, which does not require training data and can detect objects at a high recall rate and very low precision. The categorization signal comes from an object embedding loss that encourages invariant object representations, from which the object category can be inferred. We show how to combine these two signals to train the Deformable DETR detection architecture from large amounts of unlabeled data. DETReg improves the performance over competitive baselines and previous self-supervised methods on standard benchmarks like MS COCO and PASCAL VOC. DETReg also outperforms previous supervised and unsupervised baseline approaches on low-data regime when trained with only 1%, 2%, 5%, and 10% of the labeled data on MS COCO.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n detreg python=3.7 pip

    Then, activate the environment:

    conda activate detreg

    Installation: (change cudatoolkit to your cuda version. For detailed pytorch installation instructions click here)

    conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

Please download COCO 2017 dataset and ImageNet and organize them as following:

code_root/
└── data/
    ├── ilsvrc/
          ├── train/
          └── val/
    └── MSCoco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Note that in this work we used the ImageNet100 dataset, which is x10 smaller than ImageNet. To create ImageNet100 run the following command:

mkdir -p data/ilsvrc100/train
mkdir -p data/ilsvrc100/val
while read line; do ln -s <code_root>/data/ilsvrc/train/$line <code_root>/data/ilsvrc100/train/$line; done < <code_root>/datasets/category.txt
while read line; do ln -s <code_root>/data/ilsvrc/val/$line <code_root>/data/ilsvrc100/val/$line; done < <code_root>/datasets/category.txt

This should results with the following structure:

code_root/
└── data/
    ├── ilsvrc/
          ├── train/
          └── val/
    ├── ilsvrc100/
          ├── train/
          └── val/
    └── MSCoco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Create ImageNet Selective Search boxes:

Download the precomputed ImageNet boxes and extract in the cache folder:

mkdir -p /cache/ilsvrc && cd /cache/ilsvrc 
wget https://github.com/amirbar/DETReg/releases/download/1.0.0/ss_box_cache.tar.gz
tar -xf ss_box_cache.tar.gz

Alternatively, you can compute Selective Search boxes yourself:

To create selective search boxes for ImageNet100 on a single machine, run the following command (set num_processes):

python -m datasets.cache_ss --dataset imagenet100 --part 0 --num_m 1 --num_p <num_processes_to_use> 

To speed up the creation of boxes, change the arguments accordingly and run the following command on each different machine:

python -m datasets.cache_ss --dataset imagenet100 --part <machine_number> --num_m <num_machines> --num_p <num_processes_to_use> 

The cached boxes are saved in the following structure:

code_root/
└── cache/
    └── ilsvrc/

Training

The command for pretraining DETReg on 8 GPUs on ImageNet100 is as following:

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/DETReg_top30_in100.sh --batch_size 24 --num_workers 8

Training takes around 1.5 days with 8 NVIDIA V100 GPUs, you can download a pretrained model (see below) if you want to skip this step.

After pretraining, a checkpoint is saved in exps/DETReg_top30_in100/checkpoint.pth. To fine tune it over different coco settings use the following commands: Fine tuning on full COCO (should take 2 days with 8 NVIDIA V100 GPUs):

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/DETReg_fine_tune_full_coco.sh

For smaller subsets which trains faster, you can use smaller number of gpus (e.g 4 with batch size 2)/ Fine tuning on 1%

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs/DETReg_fine_tune_1pct_coco.sh --batch_size 2

Fine tuning on 2%

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs/DETReg_fine_tune_2pct_coco.sh --batch_size 2

Fine tuning on 5%

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs/DETReg_fine_tune_5pct_coco.sh --batch_size 2

Fine tuning on 10%

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs/DETReg_fine_tune_10pct_coco.sh --batch_size 2

Evaluation

To evaluate a finetuned model, use the following command from the project basedir:

./configs/<config file>.sh --resume exps/<config file>/checkpoint.pth --eval

Pretrained Models

Cite

If you found this code helpful, feel free to cite our work:

@misc{bar2021detreg,
      title={DETReg: Unsupervised Pretraining with Region Priors for Object Detection},
      author={Amir Bar and Xin Wang and Vadim Kantorov and Colorado J Reed and Roei Herzig and Gal Chechik and Anna Rohrbach and Trevor Darrell and Amir Globerson},
      year={2021},
      eprint={2106.04550},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Related Works

If you found DETReg useful, consider checking out these related works as well: ReSim, SwAV, DETR, UP-DETR, and Deformable DETR.

Acknowlegments

DETReg builds on previous works code base such as Deformable DETR and UP-DETR. If you found DETReg useful please consider citing these works as well.

Comments
  • Question about reproducing the Semi-supervised Learning experiment

    Question about reproducing the Semi-supervised Learning experiment

    When i using this checkpoint as pretrain

    image

    and using these script to reproducing the Semi-supervised Learning experiment

    image

    the result turns out to be huge difference :

    image

    Please help me, did i missing anything in reproducing ?

    By the way, i can reproduce the full COCO result @45.5AP. So the conda env is probably right.

    opened by 4-0-4-notfound 5
  • Question about selective search cached boxes in training and validation

    Question about selective search cached boxes in training and validation

    Why are there some '.npy' files for the Imagnet validation set in 'ss_box_cache.tar.gz', for example ILSVRC2012_val_00000006.npy. Are training sets and validation sets used for pretraining?

    opened by CQIITLAB 3
  • RuntimeError: The size of tensor a (512) must match the size of tensor b (128) at non-singleton dimension 3

    RuntimeError: The size of tensor a (512) must match the size of tensor b (128) at non-singleton dimension 3

    Hi, I'm trying to run the pretraining but I receive a mismatch size here https://github.com/amirbar/DETReg/blob/main/models/deformable_detr.py#L328, src_features has a shape of torch.Size([228, 512]) and target_features a shape of torch.Size([228, 3, 128, 128]). Is this ok?

    Start training /home/jossalgon/my-envs/detreg/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /opt/conda/conda-bld/pytorch_1623448265233/work/c10/core/TensorImpl.h:1156.) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) /home/jossalgon/my-envs/detreg/lib/python3.7/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /opt/conda/conda-bld/pytorch_1623448265233/work/aten/src/ATen/native/BinaryOps.cpp:467.) return torch.floor_divide(self, other) /home/jossalgon/notebooks/unsupervised/DETReg/models/deformable_detr.py:329: UserWarning: Using a target size (torch.Size([228, 3, 128, 128])) that is different to the input size (torch.Size([228, 512])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. return {'object_embedding_loss': torch.nn.functional.l1_loss(src_features, target_features, reduction='mean')} Traceback (most recent call last): File "main.py", line 403, in main(args) File "main.py", line 314, in main model, swav_model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm) File "/home/jossalgon/notebooks/unsupervised/DETReg/engine.py", line 50, in train_one_epoch loss_dict = criterion(outputs, targets) File "/home/jossalgon/my-envs/detreg/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/jossalgon/notebooks/unsupervised/DETReg/models/deformable_detr.py", line 406, in forward losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) File "/home/jossalgon/notebooks/unsupervised/DETReg/models/deformable_detr.py", line 381, in get_loss return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) File "/home/jossalgon/notebooks/unsupervised/DETReg/models/deformable_detr.py", line 329, in loss_object_embedding_loss return {'object_embedding_loss': torch.nn.functional.l1_loss(src_features, target_features, reduction='mean')} File "/home/jossalgon/my-envs/detreg/lib/python3.7/site-packages/torch/nn/functional.py", line 3058, in l1_loss expanded_input, expanded_target = torch.broadcast_tensors(input, target) File "/home/jossalgon/my-envs/detreg/lib/python3.7/site-packages/torch/functional.py", line 73, in broadcast_tensors return _VF.broadcast_tensors(tensors) # type: ignore[attr-defined] RuntimeError: The size of tensor a (512) must match the size of tensor b (128) at non-singleton dimension 3 Traceback (most recent call last): File "./tools/launch.py", line 192, in main() File "./tools/launch.py", line 188, in main cmd=process.args)

    Using: cudatoolkit 11.1.74 h6bb024c_0 nvidia/linux-64 pytorch 1.9.0 py3.7_cuda11.1_cudnn8.0.5_0 pytorch/linux-64 torchaudio 0.9.0 py37 pytorch/linux-64 torchvision 0.10.0 py37_cu111 pytorch/linux-64

    Thanks and great work!

    opened by jossalgon 3
  • error occured when following the Compiling CUDA operators step.

    error occured when following the Compiling CUDA operators step.

    Hello, when I try to run sh ./make.sh by following the Compiling CUDA operators it always show the error, Traceback (most recent call last): File "setup.py", line 69, in ext_modules=get_extensions(), File "setup.py", line 47, in get_extensions raise NotImplementedError('Cuda is not availabel') NotImplementedError: Cuda is not availabel

    Any idea why this happens? Thanks!

    opened by ruizhaoz 2
  • Can`t install MultiScaleDeformableAttention

    Can`t install MultiScaleDeformableAttention

    Hi, I have seen others have resolved this, but no clues are left behind. I was not able to install the MultiScaleDeformableAttention package from pip or conda, and there is nothing in Readme.

    Please assist. Thank you!

    opened by jshtok 2
  • Results between IN100 and IN1k setting

    Results between IN100 and IN1k setting

    In the arXiv v1 version, the fine-tune result on COCO is 45.5 with IN100 pretrain. But in the arXiv v2 version, it seems the fine-tune result on COCO is still 45.5, but the pretrain dataset is IN1k. So, in my understanding, with more pretrain data, but the fine-tune result is not improved?

    opened by 4-0-4-notfound 2
  • Fine Tuning the Model on a fraction of VOC

    Fine Tuning the Model on a fraction of VOC

    Hi @amirbar,

    Thank You for the great work. It looks like the parameter --filter_pct has never been used in the code. It means the code effectively running fine-tuning on whole VOC/COCO datasets. Please correct me if I am wrong.

    Thanks

    opened by mmaaz60 2
  • It seems in the pretrain stage the network output 90 categories instead of 2

    It seems in the pretrain stage the network output 90 categories instead of 2

    Hello, It seems the network output 90 categories instead of 2, in the pretrain stage. In the paper, it supposes to output 2 categories (either back gourd or foreground), which is not true in the code. I'm so confused, Am i missing something?

    https://github.com/amirbar/DETReg/blob/490e40403860d51c19333b5db53bcd0ee23647ad/configs/DETReg_top30_in100.sh#L8

    https://github.com/amirbar/DETReg/blob/490e40403860d51c19333b5db53bcd0ee23647ad/main.py#L120

    https://github.com/amirbar/DETReg/blob/490e40403860d51c19333b5db53bcd0ee23647ad/models/deformable_detr.py#L497-L503

    opened by 4-0-4-notfound 2
  • Pretrained model on ImageNet-1K

    Pretrained model on ImageNet-1K

    Hi, Thank you for sharing your great work. I am conducting a study on the features of DETReg, and wanted to explore the performance with the pretrained model trained on the full ImageNet. I was wondering if you could share an ImageNet-1K pretrained model?

    Thank you

    opened by hanoonaR 2
  • Bug: Target[

    Bug: Target["area"] incorrect when using selective_search (and possibly others)

    The selective_search function changes the boxes to xyxy coordinates. boxes[..., 2] = boxes[..., 0] + boxes[..., 2] boxes[..., 3] = boxes[..., 1] + boxes[..., 3]

    In [get_item] (https://github.com/amirbar/DETReg/blob/36ae5844183499f6bc1a6d8922427b0f473e06d9/datasets/selfdet.py#L67)
    we have boxes = selective_search(img, h, w, res_size=128) ... target['boxes'] = torch.tensor(boxes) ... target['area'] = target['boxes'][..., 2] * target['boxes'][..., 3]

    But boxes at this point on in xyxy not cxcywh, So the "area" is incorrect. I do not know if this effects anything down the line, it may not.

    opened by AZaitzeff 1
  • What is the difference between 'head' and 'intermediate' in 'obj_embedding_head'?

    What is the difference between 'head' and 'intermediate' in 'obj_embedding_head'?

    https://github.com/amirbar/DETReg/blob/0a258d879d8981b27ab032b83defc6dfcbf07d35/models/backbone.py#L156-L177

    It seems 'head' is the new training setting that uses dim=128 to align features. But dim=512 ('intermediate') is used in the paper. Does it mean that we should change to dim=128 ('head') to achieve better performance of DETReg?

    Thanks.

    opened by Cohesion97 1
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • Fine-tuning based on the DETR architecture code, but the verification indicators are all 0

    Fine-tuning based on the DETR architecture code, but the verification indicators are all 0

    Thanks for your work. I noticed that you open-sourced the detreg of the DETR architecture, and then I tried to use the pre-trained model on the imagenet dataset you provided to fine-tune training for my custom dataset. But I found that all the indicators are still 0 after more than fifty batches of pre-training. I have followed the tips in the related issues of DETR (https://github.com/facebookresearch/detr/issues?page=1&q=zero) , the num_calss was modified. Many people mentioned that DETR requires a large amount of training data, or fine-tuning. But I am currently using fine-tuning, and the number of fine-tuning datasets is about one thousand. But the effect is still very poor, may I ask why. It's normal for me to use deformable-detr architecture. image

    opened by Flyooofly 0
  •   checkpoint_args = torch.load(args.resume, map_location='cpu')['args'] KeyError: 'args'???

    checkpoint_args = torch.load(args.resume, map_location='cpu')['args'] KeyError: 'args'???

    1: checkpoint_args = torch.load(args.resume,map_location='cpu')['args'] KeyError: 'args' I have this kind of error report in the evaluation stage, I don't know how to deal with it, I hope the owner can help me to solve it, thank you very much. 2: Does the test effect of a single GPU appear to be reduced?

    opened by 873552584 0
  • About few-shot object detection

    About few-shot object detection

    I found the result of few-shot object detection is better than others, could you release the few-shot object detection code? or hyperparameters? or how to import novel and base datasets? thanks :)

    opened by YAOSL98 0
  • urllib.error.HTTPError: HTTP Error 403: Forbidden

    urllib.error.HTTPError: HTTP Error 403: Forbidden

    Downloading: "https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar" to C:\Users\pc/.cache\torch\hub\checkpoints\swav_800ep_pretrain.pth.tar urllib.error.HTTPError: HTTP Error 403: Forbidden hope to solve,thanks

    opened by GDzhu01 0
Releases(1.0.0)
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022