Segmentation vgg16 fcn - cityscapes

Overview

VGGSegmentation

Segmentation vgg16 fcn - cityscapes Priprema skupa

skripta prepare_dataset_downsampled.py

Iz slika cityscapesa izrezuje haubu automobila, i smanjuje sliku na željenu rezoluciju, to zapisuje u tfrecords formatu. Treba zadati putanju do cityscapesa, izlazni direktorij gdje će se spremati tfrecordsi i zadati željenu rezoluciju.

Priprema težina vgg-a

Da bi se model mogao fine-tuneati treba na disku imati spremljene težine mreže (prethodno naučene na nekom drugom skupu). One se mogu skinuti s interneta u raznim formatima.

Ja sam ih imala spremljene u sljedećim datotekama: conv1_1_biases.bin conv1_1_weights.bin conv1_2_biases.bin conv1_2_weights.bin conv2_1_biases.bin conv2_1_weights.bin conv2_2_biases.bin conv2_2_weights.bin conv3_1_biases.bin conv3_1_weights.bin conv3_2_biases.bin conv3_2_weights.bin conv3_3_biases.bin conv3_3_weights.bin conv4_1_biases.bin conv4_1_weights.bin conv4_2_biases.bin conv4_2_weights.bin conv4_3_biases.bin conv4_3_weights.bin conv5_1_biases.bin conv5_1_weights.bin conv5_2_biases.bin conv5_2_weights.bin conv5_3_biases.bin conv5_3_weights.bin fc6_biases.bin fc6_weights.bin fc7_biases.bin fc7_weights.bin fc8_biases.bin fc8_weights.bin

Ako će se težine učitavati iz ckpt. datoteke npr vgg_16.ckpt, onda će i u kodu trebati mjenjati metodu create_init_op unutar model.py

Konfiguracija

config/cityscapes.py - primjer fajla s konfiguracijom za treniranje

Treba promjeniti putanje

model_path da pokazuje do py fajla s definicijom modela (primjer za takve dvije defincije su model.py i model2.py)

dataset_dir - da pokazuje do foldera s prethodno pripremljenim tfrecordsima (koji sadrzi subdirektorije train i val)

treba paziti pri razlicitim rezolucijama da se promjene zastavice img_width i height

ostale zastavice se većinom odnose na treniranje modela to mjenjati prema potrebi.

subsample_factor zastavica bi označavala faktor za koji se rezolucija mape smanji na kraju mreže. Taj faktor će ovisiti o samome modelu koji se trenira, ako model ima tri pooling sloja 2*2 svaki taj sloj će sliku smanjiti za dva puta pa će ukupno smanjnjenje biti za faktor osam

train.py - skripta koja pokreće skriptu treniranja, nakon svake epohe model se evaluira na skupu za validaciju.

Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022