PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

Related tags

Deep LearningAdaAttN
Overview

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer

[Paper] [PyTorch Implementation] [Paddle Implementation]

Overview

This repository contains the official PyTorch implementation of paper:

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer,

Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian Li, Errui Ding

ICCV 2021

Prerequisites

  • Linux or macOS
  • Python 3
  • PyTorch 1.7+ and other dependencies (torchvision, visdom, dominate, and other common python libs)

Getting Started

  • Clone this repository:

    git clone https://github.com/Huage001/AdaAttN
    cd AdaAttN
  • Inference:

    • Make a directory for checkpoints if there is not:

      mkdir checkpoints
    • Download pretrained model from Google Drive, move it to checkpoints directory, and unzip:

      mv [Download Directory]/AdaAttN_model.zip checkpoints/
      unzip checkpoints/AdaAttN_model.zip
      rm checkpoints/AdaAttN_model.zip
    • Configure content_path and style_path in test_adaattn.sh firstly, indicating paths to folders of testing content images and testing style images respectively.

    • Then, simply run:

      bash test_adaattn.sh
    • Check the results under results/AdaAttN folder.

  • Train:

    • Download COCO dataset and WikiArt dataset and then extract them.

    • Configure content_path and style_path in train_adaattn.sh, indicating paths to folders of training content images and training style images respectively.

    • Before training, start visdom server:

      python -m visdom.server
    • Then, simply run:

      bash train_adaattn.sh
    • You can monitor training status at http://localhost:8097/ and models would be saved at checkpoints/AdaAttN folder.

    • You may feel free to try other training options written in train_adaattn.sh.

Citation

  • If you find ideas or codes useful for your research, please cite:

    @inproceedings{liu2021adaattn,
      title={AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer},
      author={Liu, Songhua and Lin, Tianwei and He, Dongliang and Li, Fu and Wang, Meiling and Li, Xin and Sun, Zhengxing and Li, Qian and Ding, Errui},
      booktitle={Proceedings of the IEEE International Conference on Computer Vision},
      year={2021}
    }
    

Acknowledgments

YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022