PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

Related tags

Deep LearningAdaAttN
Overview

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer

[Paper] [PyTorch Implementation] [Paddle Implementation]

Overview

This repository contains the official PyTorch implementation of paper:

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer,

Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian Li, Errui Ding

ICCV 2021

Prerequisites

  • Linux or macOS
  • Python 3
  • PyTorch 1.7+ and other dependencies (torchvision, visdom, dominate, and other common python libs)

Getting Started

  • Clone this repository:

    git clone https://github.com/Huage001/AdaAttN
    cd AdaAttN
  • Inference:

    • Make a directory for checkpoints if there is not:

      mkdir checkpoints
    • Download pretrained model from Google Drive, move it to checkpoints directory, and unzip:

      mv [Download Directory]/AdaAttN_model.zip checkpoints/
      unzip checkpoints/AdaAttN_model.zip
      rm checkpoints/AdaAttN_model.zip
    • Configure content_path and style_path in test_adaattn.sh firstly, indicating paths to folders of testing content images and testing style images respectively.

    • Then, simply run:

      bash test_adaattn.sh
    • Check the results under results/AdaAttN folder.

  • Train:

    • Download COCO dataset and WikiArt dataset and then extract them.

    • Configure content_path and style_path in train_adaattn.sh, indicating paths to folders of training content images and training style images respectively.

    • Before training, start visdom server:

      python -m visdom.server
    • Then, simply run:

      bash train_adaattn.sh
    • You can monitor training status at http://localhost:8097/ and models would be saved at checkpoints/AdaAttN folder.

    • You may feel free to try other training options written in train_adaattn.sh.

Citation

  • If you find ideas or codes useful for your research, please cite:

    @inproceedings{liu2021adaattn,
      title={AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer},
      author={Liu, Songhua and Lin, Tianwei and He, Dongliang and Li, Fu and Wang, Meiling and Li, Xin and Sun, Zhengxing and Li, Qian and Ding, Errui},
      booktitle={Proceedings of the IEEE International Conference on Computer Vision},
      year={2021}
    }
    

Acknowledgments

U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022