This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

Related tags

Deep LearningPFD_Net
Overview

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer

Python >=3.6 PyTorch >=1.6

This repo is the official implementation of "Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer(PFD), Tao Wang, Hong Liu, Pinghao Song, Tianyu Guo& Wei Shi" in PyTorch.

Pipeline

framework

Dependencies

  • timm==0.3.2

  • torch==1.6.0

  • numpy==1.20.2

  • yacs==0.1.8

  • opencv_python==4.5.2.54

  • torchvision==0.7.0

  • Pillow==8.4.0

Installation

pip install -r requirements.txt

If you find some packages are missing, please install them manually.

Prepare Datasets

mkdir data

Please download the dataset, and then rename and unzip them under the data

data
|--market1501
|
|--Occluded_Duke
|
|--Occluded_REID
|
|--MSMT17
|
|--dukemtmcreid

Prepare ViT Pre-trained and HRNet Pre-trained Models

mkdir data

The ViT Pre-trained model can be found in ViT_Base, The HRNet Pre-trained model can be found in HRNet, please download it and put in the './weights' dictory.

Training

We use One GeForce GTX 1080Ti GPU for Training Before train the model, please modify the parameters in config file, please refer to Arguments in TransReID

python occ_train.py --config_file {config_file path}
#example
python occ_train.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Test the model

First download the Occluded-Duke model:Occluded-Duke

To test on pretrained model on Occ-Duke: Modify the pre-trained model path (PRETRAIN_PATH:ViT_Base, POSE_WEIGHT:HRNet, WEIGHT:Occluded-Duke) in yml, and then run:

## OccDuke for example
python test.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Occluded-Duke Results

Model Image Size Rank-1 mAP
HOReID 256*128 55.1 43.8
PAT 256*128 64.5 53.6
TransReID 256*128 64.2 55.7
PFD 256*128 67.7 60.1
TransReID* 256*128 66.4 59.2
PFD* 256*128 69.5 61.8

$*$means the encoder is with a small step sliding-window setting

Occluded-REID Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 81.6 72.1
PFD 256*128 79.8 81.3

Market-1501 Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 95.4 88.0
TransReID 256*128 95.4 88.0
PFD 256*128 95.5 89.6

Citation

If you find our work useful in your research, please consider citing this paper! (preprint version will be available soon)

@inproceedings{wang2022pfd,
  Title= {Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer},
  Author= {Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo and Wei Shi},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

Our code is extended from the following repositories. We thank the authors for releasing the codes.

License

This project is licensed under the terms of the MIT license.

You might also like...
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Comments
  • 精度达不到论文里面的数据

    精度达不到论文里面的数据

    作者您好,我在1501上测试了一下 就改了 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/configs/Market1501/skeleton_pfd.yml 这个文件,里面的参数并没有改动 改了权重的路径,和文件夹的路径 其他都没变,如何训练300轮次后 我选择最高300轮的 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth 去测试 结果是 : 2021-12-28 18:23:39,417 PFDreid.test INFO: Validation Results 2021-12-28 18:23:39,417 PFDreid.test INFO: mAP: 88.2% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-1 :94.8% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-5 :98.3% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-10 :99.0% 达不到论文的95.5 甚至不如TransReID的精度 ??? 您能看看是为什么嘛?

    MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'on' IF_WITH_CENTER: 'no' NAME: 'skeleton_transformer' NO_MARGIN: True DEVICE_ID: ('2') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16]

    SIE_CAMERA: True SIE_COE: 3.0 JPM: True RE_ARRANGE: True NUM_HEAD: 8 DECODER_DROP_RATE: 0.1 DROP_FIRST: False NUM_DECODER_LAYER: 6 QUERY_NUM: 17 POSE_WEIGHT: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/pose_hrnet_w48_384x288.pth' SKT_THRES: 0.2

    INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]

    DATASETS: NAMES: ('market1501') ROOT_DIR: ('/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/data/')

    DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8

    SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 300 BASE_LR: 0.008 IMS_PER_BATCH: 64 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 60 LOG_PERIOD: 50 EVAL_PERIOD: 30 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2

    TEST: EVAL: True IMS_PER_BATCH: 256 RE_RANKING: False WEIGHT: "/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth" #put your own pth NECK_FEAT: 'before' FEAT_NORM: 'yes'

    OUTPUT_DIR: 'logs/Market/pfd_net'

    opened by zqx951102 3
  • 使用您的Occluded-Duke的预训练模型达不到文中的结果

    使用您的Occluded-Duke的预训练模型达不到文中的结果

    作者您好: 感谢你做出如此优秀的工作,我按照reademe的要求在使用您的Occluded-Duke的预训练模型时,发现达不到文中所说的结果,下图是我测试的结果: image 跟论文中的结果大约相差2%,我使用的时pytorch1.7.1, cuda10.2, python3.7.13;所以我想知道这是什么原因造成的呢? 期待您的回复。

    opened by changshuowang 2
  • There is no Occlude-REID data loader

    There is no Occlude-REID data loader

    Good work! I respect your contributions!

    I want to testing Occluded-REID dataset in your code, but there is no loader. In your code, dataset.make_dataloader.py, line 14 "from .occ_reid import Occluded_REID"

    Would you share this code?

    thank you

    opened by intlabSeJun 4
Releases(V1.0.0)
Owner
Tao Wang
Tao Wang
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023