Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

Overview

UnRigidFlow

This is the official PyTorch implementation of UnRigidFlow (IJCAI2019).

Here are two sample results (~10MB gif for each) of our unsupervised models.

KITTI 15 Cityscapes
kitti cityscapes

If you find this repo useful in your research, please consider citing:

@inproceedings{Liu:2019:unrigid, 
title = {Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity}, 
author = {Liang Liu, Guangyao Zhai, Wenlong Ye, Yong Liu}, 
booktitle = {International Joint Conference on Artificial Intelligence, IJCAI}, 
year = {2019}
}

Requirements

This codebase was developed and tested with Python 3.5, Pytorch>=0.4.1, OpenCV 3.4, CUDA 9.0 and Ubuntu 16.04.

Most of the python packages can be installed by

pip3 install -r requirements.txt

In addition, Optimized correlation with CUDA kernel should be compiled manually with:

cd <correlation_package>
python3 setup.py install

and add <correlation_package> to $PYTHONPATH.

Note that if you are use PyTorch >= 1.0, you should make some changes, see NVIDIA/flownet2-pytorch#98.

Just replace #include <torch/torch.h> with #include <torch/extension.h> , adding #include <ATen/cuda/CUDAContext.h> and then replacing all at::globalContext().getCurrentCUDAStream() with at::cuda::getCurrentCUDAStream().

Training and Evaluation

We are mainly focused on KITTI benchmark. You will need to download all of the KITTI raw data and calibration files to train the model. You will also need the training files of KITTI 2012 and KITTI 2015 with calibration files [1], [2] for validating the models.

The complete training contains 3 steps:

  1. Train the flow model separately:

    python3 train.py -c configs/KITTI_flow.json
    
  2. Train the depth model separately:

    python3 train.py -c configs/KITTI_depth_stereo.json
    
  3. Train the flow and depth models jointly:

    python3 train.py -c configs/KITTI_rigid_flow_stereo.json
    

For evaluation, just adding --e options and modifying the corresponding model path for the above commands.

Pre-trained Models

You can download our pre-trained models, we provide the models as follow:

  • KITTI_flow: The separately trained optical flow network on KITTI raw data (from scratch)
  • KITTI_stereo_depth: The stereo depth network on KITTI raw data.
  • KITTI_flow_joint: The optical flow network jointly trained with stereo depth on KITTI raw data.

Acknowledgement

This repository refers some snippets from several great work, including PWC-Net, monodepth, UnFlow, UnDepthFlow, DF-Net. Although most of these are TensorFlow implementations, we are grateful for the sharing of these works, which save us a lot of time.

Owner
Liang Liu
Liang Liu
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022