Solution to the Weather4cast 2021 challenge

Overview

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predictions, evaluating pre-trained models and training new models.

Installation

To use the code, you need to:

  1. Clone the repository.
  2. Setup a conda environment. You can find an environment verified to work in the environment.yml file. However, you might have to adapt it to your own CUDA installation.
  3. Fetch the data you want from the competition website. Follow the instructions here. The data should should be in the data directory following the structure specified here.
  4. (Optional) If you want to use the pre-trained models, load them from https://doi.org/10.5281/zenodo.5101213. Place the .h5 files in the models/best directory.

Running the code

Go to the weather4cast directory. There you can either launch the main.py script with instructions provided below, or launch an interactive prompt (e.g. ipython) and then import modules and call functions from them.

Reproducing predictions

Run:

python main.py submit --comp_dir=w4c-core-stage-1 --submission_dir="../submissions/test"

where you can change --comp_dir to indicate which competition you want to create predictions for (these correspond to the directory names in the data directory) and --submission_dir to indicate where you want to save the predictions.

This script automatically loads the best model weights corresponding to the "V4pc" submission that produced the best scores on the leaderboards. To experiment with other weights, see the function combined_model_with_weights in models.py and the call to that in main.py. You can change the combination of models and weights with the argument var_weights in combined_model_with_weights.

Generating the predictions should be possible in a reasonable time also on a CPU.

Evaluate pre-trained model

python main.py train --comp_dir=w4c-core-stage-1 --model=resgru --weights="../models/best/resrnn-temperature.h5" --dataset=CTTH --variable=temperature

This example trains the ResGRU model for the temperature variable, loading the pre-trained weights from the --weights file. You can change the model and the variable using the --model, --weights, --dataset and --variable arguments.

A GPU is recommended for this although in principle it can be done on a CPU.

Train a model

python main.py train --comp_dir="w4c-core-stage-1" --model="resgru" --weights=model.h5 --dataset=CTTH --variable=temperature

The arguments are the same as for evaluate except the --weights parameter indicates instead the weights file that the training process keeps saving in the models directory.

A GPU is basically mandatory. The default batch size is set to 32 used in the study but you may have to reduce it if you don't have a lot of GPU memory.

Hint: It is not recommended to train like this except for demonstration purposes. Instead I recommend you look at how the train function in main.py works and follow that in an interactive prompt. The batch generators batch_gen_train and batch_gen_valid are very slow at first but get faster as they cache data. Once the cache is fully populated they will be much faster. You can avoid this overhead by pickling a fully loaded generator. For example:

import pickle

for i in range(len(batch_gen_train)):
    batch_gen_train[i] # fetch all batches

with open("batch_gen_train.pkl", 'wb') as f:
    pickle.dump(batch_gen_train, f)
Owner
Jussi Leinonen
Data scientist working on Atmospheric Science problems
Jussi Leinonen
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
NL-Augmenter 🦎 β†’ 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 β†’ 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Facebook Research 605 Jan 02, 2023
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW πŸŽ‰ ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022